Home
Class 12
MATHS
maximum value of log5(3x+4y) , if x^2+...

maximum value of `log_5(3x+4y)` , if `x^2+y^2=25` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( \log_5(3x + 4y) \) given the constraint \( x^2 + y^2 = 25 \), we can follow these steps: ### Step 1: Express \( y \) in terms of \( x \) From the constraint \( x^2 + y^2 = 25 \), we can express \( y \) as: \[ y = \sqrt{25 - x^2} \] ### Step 2: Substitute \( y \) into the expression Now, substitute \( y \) into the expression \( 3x + 4y \): \[ 3x + 4y = 3x + 4\sqrt{25 - x^2} \] ### Step 3: Define a new function Let \( z = 3x + 4\sqrt{25 - x^2} \). We want to maximize \( z \). ### Step 4: Differentiate \( z \) To find the maximum value, we differentiate \( z \) with respect to \( x \): \[ \frac{dz}{dx} = 3 + 4 \cdot \frac{1}{2\sqrt{25 - x^2}} \cdot (-2x) = 3 - \frac{4x}{\sqrt{25 - x^2}} \] ### Step 5: Set the derivative to zero Set the derivative equal to zero to find critical points: \[ 3 - \frac{4x}{\sqrt{25 - x^2}} = 0 \] This simplifies to: \[ 3 = \frac{4x}{\sqrt{25 - x^2}} \] ### Step 6: Solve for \( x \) Cross-multiplying gives: \[ 3\sqrt{25 - x^2} = 4x \] Squaring both sides: \[ 9(25 - x^2) = 16x^2 \] Expanding and rearranging: \[ 225 - 9x^2 = 16x^2 \implies 225 = 25x^2 \implies x^2 = 9 \] Thus, \( x = 3 \) or \( x = -3 \). We will take \( x = 3 \) since we want the maximum value. ### Step 7: Find \( y \) Substituting \( x = 3 \) back into the constraint to find \( y \): \[ y = \sqrt{25 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] ### Step 8: Substitute \( x \) and \( y \) back into the expression Now substitute \( x = 3 \) and \( y = 4 \) into \( 3x + 4y \): \[ 3(3) + 4(4) = 9 + 16 = 25 \] ### Step 9: Find the maximum value of \( \log_5(3x + 4y) \) Now we can find the maximum value of the logarithmic expression: \[ \log_5(25) = \log_5(5^2) = 2 \] ### Conclusion Thus, the maximum value of \( \log_5(3x + 4y) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

For real numbers x and y, let M be the maximum value of expression x^4y + x^3y + x^2 y + x y + xy^2 + xy^3 + xy^4 , subject to x + y = 3 . Find [M] where [.] = G.I.F.

lf sum of maximum and minimum value of y = log_2(x^4+x^2+1) - log_2 (x^4 +x^3 +2x^2+x+1) can be expressed in form ((log_2 m)-n) , where m and n are coprime then compute (m+n) .

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

Find maximum or minimum values of the functions (a) y =25 x^(2) + 5 - 10 x (b) y = 9 - (x - 3)^(2)

If real numbers x and y satisfy (x+5)^(2)+(y-12)^(2)=196 , then the maximum value of (x^(2)+y^(2))^((1)/(3)) is

Let x,y in R , then find the maximum and minimum values of expression (x^(2)+y^(2))/(x^(2)+xy+4y^(2)) .

The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7 and 12x+5y=p constitute the sides of a rhombus is

Find maximum/maximum value of y in the functions given below (a) y=5 - (x -1)^(2) (b) y =4x ^(2) - 4x + 7 (c) y= x^(3) - 3x y =x^(3) - 6x^(2) + 9x + 15 (e) y = (sin 2x - x) , where - (pi)/(2) le xxle(pi)/(2)

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. maximum value of log5(3x+4y) , if x^2+y^2=25 is

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |