Home
Class 12
MATHS
The value of (sin10^(@)+sin20^(@))/(cos1...

The value of `(sin10^(@)+sin20^(@))/(cos10^(@)+cos20^(@))` equals

A

`2+sqrt(3)`

B

`sqrt(2)-1`

C

`2-sqrt(3)`

D

`sqrt(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((\sin 10^\circ + \sin 20^\circ) / (\cos 10^\circ + \cos 20^\circ)\), we will use the sum-to-product identities for sine and cosine. ### Step-by-Step Solution: 1. **Apply the Sum-to-Product Identities**: We use the identities: \[ \sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] Here, let \(a = 20^\circ\) and \(b = 10^\circ\). 2. **Calculate the Sine Part**: \[ \sin 10^\circ + \sin 20^\circ = 2 \sin\left(\frac{10^\circ + 20^\circ}{2}\right) \cos\left(\frac{20^\circ - 10^\circ}{2}\right) \] \[ = 2 \sin(15^\circ) \cos(5^\circ) \] 3. **Calculate the Cosine Part**: \[ \cos 10^\circ + \cos 20^\circ = 2 \cos\left(\frac{10^\circ + 20^\circ}{2}\right) \cos\left(\frac{20^\circ - 10^\circ}{2}\right) \] \[ = 2 \cos(15^\circ) \cos(5^\circ) \] 4. **Substituting Back into the Original Expression**: Now we substitute these results back into the original expression: \[ \frac{\sin 10^\circ + \sin 20^\circ}{\cos 10^\circ + \cos 20^\circ} = \frac{2 \sin(15^\circ) \cos(5^\circ)}{2 \cos(15^\circ) \cos(5^\circ)} \] 5. **Cancel Common Terms**: The \(2\) and \(\cos(5^\circ)\) cancel out: \[ = \frac{\sin(15^\circ)}{\cos(15^\circ)} = \tan(15^\circ) \] 6. **Express \(\tan(15^\circ)\)**: We can express \(\tan(15^\circ)\) using the tangent subtraction formula: \[ \tan(15^\circ) = \tan(45^\circ - 30^\circ) = \frac{\tan(45^\circ) - \tan(30^\circ)}{1 + \tan(45^\circ) \tan(30^\circ)} \] Knowing \(\tan(45^\circ) = 1\) and \(\tan(30^\circ) = \frac{1}{\sqrt{3}}\): \[ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] 7. **Rationalize the Denominator**: To rationalize: \[ \tan(15^\circ) = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \cdot \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} - 1)^2}{(\sqrt{3})^2 - (1)^2} = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3} \] ### Final Answer: Thus, the value of \(\frac{\sin 10^\circ + \sin 20^\circ}{\cos 10^\circ + \cos 20^\circ}\) is: \[ 2 - \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

The value of (2sin40^(@).sin50^(@).tan10^(@))/(cos 80^(@)) is

What is the value of (cos 10 ^(@) + sin 20^(@))/( cos 20^(@) - sin 10 ^(@))?

The value of cos 10^@ - sin 10^@ is

sin10 5^(@)+cos10 5^(@)=

The value of sin50^(@) - sin70^(@)+sin10^(@) is equal to

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

Prove that (sin20^(@) + sin40^(@)) + (cos20^(@) + cos40^(@))=(sqrt(3)+1)cos10^(@)

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

The value of (cos25^(@))/(sin70^(@)sin85^(@))+(cos70^(@))/(sin 25^(@)sin85^(@))+(cos85^(@))/(sin25^(@)sin70^(@)) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The value of (sin10^(@)+sin20^(@))/(cos10^(@)+cos20^(@)) equals

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |