Home
Class 12
MATHS
The value of the expression sin^6 theta ...

The value of the expression `sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta` equals

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^6 \theta + \cos^6 \theta + 3 \sin^2 \theta \cos^2 \theta \), we can use the identity for the sum of cubes and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Recognize the Structure We can recognize that the expression \( \sin^6 \theta + \cos^6 \theta \) can be rewritten using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] where \( a = \sin^2 \theta \) and \( b = \cos^2 \theta \). ### Step 2: Apply the Identity Using the identity, we rewrite: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \sin^6 \theta + \cos^6 \theta = 1 \cdot (\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) = \sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta \] ### Step 3: Simplify Further Next, we can simplify \( \sin^4 \theta + \cos^4 \theta \) using the identity: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \] Substituting \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^4 \theta + \cos^4 \theta = 1^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] ### Step 4: Combine Everything Now, substituting back into our expression: \[ \sin^6 \theta + \cos^6 \theta = (1 - 2\sin^2 \theta \cos^2 \theta) - \sin^2 \theta \cos^2 \theta \] This simplifies to: \[ \sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta \] ### Step 5: Substitute Back into the Original Expression Now, substituting this back into the original expression: \[ \sin^6 \theta + \cos^6 \theta + 3 \sin^2 \theta \cos^2 \theta = (1 - 3\sin^2 \theta \cos^2 \theta) + 3 \sin^2 \theta \cos^2 \theta \] This simplifies to: \[ 1 - 3\sin^2 \theta \cos^2 \theta + 3\sin^2 \theta \cos^2 \theta = 1 \] ### Final Answer Thus, the value of the expression \( \sin^6 \theta + \cos^6 \theta + 3 \sin^2 \theta \cos^2 \theta \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

sin^6theta+cos^6theta\ \ for all theta

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta....

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |