Home
Class 12
MATHS
(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(t...

`(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)=`, where `x in (0, (pi)/(2))`

A

`(1)/(tan x+1)`

B

`(2)/(1+tanx)`

C

`(2)/(1+cot x)`

D

`(2)/(1-tan x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin x + \cos x)/(\sin x - \cos x) - (\sec^2 x + 2)/(\tan^2 x - 1)\), we will convert everything into terms of \(\tan x\). ### Step-by-Step Solution: 1. **Rewrite the first term**: \[ \frac{\sin x + \cos x}{\sin x - \cos x} \] We can divide both the numerator and the denominator by \(\cos x\): \[ = \frac{\frac{\sin x}{\cos x} + 1}{\frac{\sin x}{\cos x} - 1} = \frac{\tan x + 1}{\tan x - 1} \] 2. **Rewrite the second term**: \[ \frac{\sec^2 x + 2}{\tan^2 x - 1} \] Recall that \(\sec^2 x = 1 + \tan^2 x\): \[ = \frac{1 + \tan^2 x + 2}{\tan^2 x - 1} = \frac{\tan^2 x + 3}{\tan^2 x - 1} \] 3. **Combine the two terms**: Now we have: \[ \frac{\tan x + 1}{\tan x - 1} - \frac{\tan^2 x + 3}{\tan^2 x - 1} \] To combine these fractions, we need a common denominator: \[ = \frac{(\tan x + 1)(\tan^2 x - 1) - (\tan^2 x + 3)(\tan x - 1)}{(\tan x - 1)(\tan^2 x - 1)} \] 4. **Expand the numerators**: Expanding the first part: \[ (\tan x + 1)(\tan^2 x - 1) = \tan^3 x - \tan x + \tan^2 x - 1 \] Expanding the second part: \[ (\tan^2 x + 3)(\tan x - 1) = \tan^3 x - \tan^2 x + 3\tan x - 3 \] 5. **Combine the expansions**: Now combine: \[ \tan^3 x - \tan x + \tan^2 x - 1 - (\tan^3 x - \tan^2 x + 3\tan x - 3) \] Simplifying this gives: \[ \tan^3 x - \tan x + \tan^2 x - 1 - \tan^3 x + \tan^2 x - 3\tan x + 3 = 2\tan^2 x - 4\tan x + 2 \] 6. **Final expression**: Thus, the expression simplifies to: \[ \frac{2(\tan^2 x - 2\tan x + 1)}{(\tan x - 1)(\tan^2 x - 1)} \] Recognizing that \((\tan^2 x - 2\tan x + 1) = (\tan x - 1)^2\): \[ = \frac{2(\tan x - 1)^2}{(\tan x - 1)(\tan^2 x - 1)} \] Cancelling \((\tan x - 1)\) gives: \[ = \frac{2(\tan x - 1)}{\tan^2 x - 1} \] 7. **Final simplification**: Since \(\tan^2 x - 1 = (\tan x - 1)(\tan x + 1)\), we can simplify further: \[ = \frac{2}{\tan x + 1} \] ### Final Answer: \[ \frac{2}{\tan x + 1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)) , with respect to (x)/(2) , where x in(0,(pi)/(2)) is:

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx-sin^3x|]], x != pi/2 for x in (0,pi), f(pi/2) = 3 where [ ] denotes the greatest integer function then,

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

The value of int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx is (where c is the constant of integration)

y(dy)/(dx)sinx=cosx(sinx-(y^2)/2); where at x=pi/2,

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. (sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)=, where x in (0, (p...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |