Home
Class 12
MATHS
If (cot alpha+cot(270^(@)+alpha))/(cot ...

If `(cot alpha+cot(270^(@)+alpha))/(cot alpha-cot(270^(@)+alpha))-2 cos(135^(@)+alpha)cos(315^(@)-alpha)=lambda`, where `alpha in (0, (pi)/(2))`, then `lambda=`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cot \alpha + \cot(270^\circ + \alpha)}{\cot \alpha - \cot(270^\circ + \alpha)} - 2 \cos(135^\circ + \alpha) \cos(315^\circ - \alpha) = \lambda, \] where \(\alpha \in (0, \frac{\pi}{2})\), we will simplify the left-hand side step by step. ### Step 1: Simplify \(\cot(270^\circ + \alpha)\) Using the cotangent identity, we know that: \[ \cot(270^\circ + \alpha) = \tan(\alpha). \] Thus, we can rewrite the expression as: \[ \frac{\cot \alpha + \tan \alpha}{\cot \alpha - \tan \alpha}. \] ### Step 2: Rewrite \(\tan\) in terms of \(\cot\) Recall that \(\tan \alpha = \frac{1}{\cot \alpha}\). Therefore, we can substitute this into our expression: \[ \frac{\cot \alpha + \frac{1}{\cot \alpha}}{\cot \alpha - \frac{1}{\cot \alpha}}. \] ### Step 3: Simplify the fractions Now, we can simplify the numerator and denominator: - **Numerator**: \[ \cot \alpha + \frac{1}{\cot \alpha} = \frac{\cot^2 \alpha + 1}{\cot \alpha} = \frac{\csc^2 \alpha}{\cot \alpha}. \] - **Denominator**: \[ \cot \alpha - \frac{1}{\cot \alpha} = \frac{\cot^2 \alpha - 1}{\cot \alpha} = \frac{\cos^2 \alpha - \sin^2 \alpha}{\sin^2 \alpha \cos^2 \alpha}. \] Thus, the entire expression becomes: \[ \frac{\csc^2 \alpha}{\cot^2 \alpha - 1} = \frac{1}{\sin^2 \alpha} \cdot \frac{\sin^2 \alpha \cos^2 \alpha}{\cos^2 \alpha - \sin^2 \alpha}. \] ### Step 4: Simplify the cosine terms Next, we need to simplify \( -2 \cos(135^\circ + \alpha) \cos(315^\circ - \alpha) \): Using the cosine addition formula: \[ \cos(135^\circ + \alpha) = -\frac{1}{\sqrt{2}} \cos \alpha - \frac{1}{\sqrt{2}} \sin \alpha, \] and \[ \cos(315^\circ - \alpha) = \frac{1}{\sqrt{2}} \cos \alpha + \frac{1}{\sqrt{2}} \sin \alpha. \] Now, multiplying these two: \[ -2 \left(-\frac{1}{\sqrt{2}} \cos \alpha - \frac{1}{\sqrt{2}} \sin \alpha\right) \left(\frac{1}{\sqrt{2}} \cos \alpha + \frac{1}{\sqrt{2}} \sin \alpha\right). \] This expands to: \[ -2 \left(-\frac{1}{2}(\cos^2 \alpha - \sin^2 \alpha)\right) = \cos^2 \alpha - \sin^2 \alpha. \] ### Step 5: Combine the results Now, we can combine the results from steps 3 and 4: \[ \frac{1}{\cos^2 \alpha - \sin^2 \alpha} - (\cos^2 \alpha - \sin^2 \alpha) = \lambda. \] ### Step 6: Final simplification This leads to: \[ \frac{1 - (\cos^2 \alpha - \sin^2 \alpha)^2}{\cos^2 \alpha - \sin^2 \alpha} = \lambda. \] ### Step 7: Conclusion We can analyze the limits of \(\lambda\) as \(\alpha\) varies from \(0\) to \(\frac{\pi}{2}\). The value of \(\lambda\) will be positive and will vary from \(2\) to \(\infty\). Thus, the final answer is: \[ \lambda \in (2, \infty). \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

If 4nalpha =pi then cot alpha cot 2 alpha cot 3alpha ...cot (2n-1)alpha n in Z is equal to

1/(tan3alpha-tanalpha)-1/(cot3alpha-cotalpha)=cot2alpha

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

prove that : tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)

Prove: (2)/( cot alpha tan 2 alpha ) = 1 - tan ^(2) alpha.

Prove that cot alpha - tan alpha =2 cot 2 alpha.

Evaluate cos alpha cos 2 alpha cos 3 alpha..........cos 999alpha , where alpha=(2pi)/(1999)

Show that 1 + cot^2 alpha / (1+ cosec alpha) = cosec alpha

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If (cot alpha+cot(270^(@)+alpha))/(cot alpha-cot(270^(@)+alpha))-2 co...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |