Home
Class 12
MATHS
If cosecx=2/sqrt3 and cotx=-1/sqrt3 for ...

If `cosecx=2/sqrt3` and `cotx=-1/sqrt3` for x `in[0,2pi]` then `cosx+cos2x+cos3x+....+cos100x` is

A

`(1)/(2)`

B

`-(1)/(2)`

C

`-(sqrt(3))/(2)`

D

`(sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos x + \cos 2x + \cos 3x + \ldots + \cos 100x \) given that \( \csc x = \frac{2}{\sqrt{3}} \) and \( \cot x = -\frac{1}{\sqrt{3}} \). ### Step-by-Step Solution: 1. **Find \( \sin x \) and \( \cos x \)**: - Given \( \csc x = \frac{2}{\sqrt{3}} \), we have: \[ \sin x = \frac{1}{\csc x} = \frac{\sqrt{3}}{2} \] - Given \( \cot x = -\frac{1}{\sqrt{3}} \), we can find \( \cos x \) using the identity \( \cot x = \frac{\cos x}{\sin x} \): \[ \cos x = \cot x \cdot \sin x = -\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = -\frac{1}{2} \] 2. **Determine the quadrant for \( x \)**: - Since \( \sin x > 0 \) and \( \cot x < 0 \), \( x \) must be in the second quadrant. 3. **Find the angle \( x \)**: - We know \( \sin x = \frac{\sqrt{3}}{2} \) corresponds to \( x = \frac{\pi}{3} \). Since \( x \) is in the second quadrant: \[ x = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] 4. **Calculate \( \cos 2x \) and \( \cos 3x \)**: - Using the double angle formula: \[ \cos 2x = 2\cos^2 x - 1 = 2\left(-\frac{1}{2}\right)^2 - 1 = 2 \cdot \frac{1}{4} - 1 = \frac{1}{2} - 1 = -\frac{1}{2} \] - Using the triple angle formula: \[ \cos 3x = 4\cos^3 x - 3\cos x = 4\left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right) = 4 \cdot -\frac{1}{8} + \frac{3}{2} = -\frac{1}{2} + \frac{3}{2} = 1 \] 5. **Use the formula for the sum of cosines**: - The formula for the sum \( S = \cos x + \cos 2x + \cos 3x + \ldots + \cos 100x \) can be expressed as: \[ S = \frac{\sin(n \cdot b)}{\sin(b)} \cdot \cos\left(a + \frac{(n-1)b}{2}\right) \] - Here, \( a = x \), \( b = x \), and \( n = 100 \): \[ S = \frac{\sin(100 \cdot \frac{2\pi}{3})}{\sin(\frac{2\pi}{3})} \cdot \cos\left(\frac{2\pi}{3} + \frac{99 \cdot \frac{2\pi}{3}}{2}\right) \] 6. **Calculate \( S \)**: - Since \( \sin(100 \cdot \frac{2\pi}{3}) = \sin(66\pi + \frac{2\pi}{3}) = \sin(\frac{2\pi}{3}) \): \[ S = \frac{\sin(\frac{2\pi}{3})}{\sin(\frac{2\pi}{3})} \cdot \cos\left(\frac{2\pi}{3} + 33\pi\right) = 1 \cdot \cos(\frac{2\pi}{3}) = -\frac{1}{2} \] ### Final Answer: Thus, the value of \( \cos x + \cos 2x + \cos 3x + \ldots + \cos 100x \) is \( -\frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If cosx=(sqrt(3))/(2) , find cos2x.

Solve cosx+cos3x-2cos2x=0

Solve cos3x+cosx-cos2x=0

Solve: cos3x+cosx-cos2x=0

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

Prove that 2cosx. Cos 3x- 2cos 5x. Cos 7x- cos 4x + cos12x=0 .

If 2 sin x = sqrt3 , evaluate . 3 cos x - 4 cos^3x .

If (cos3x)/(cosx)=1/3 for some angle x,0<=x<=pi/2 then the value of (sin3x)/(sin2x) for some x is

12sqrt(3)-(8cos x)((3sqrt(3))/(2)cos x)=

int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If cosecx=2/sqrt3 and cotx=-1/sqrt3 for x in[0,2pi] then cosx+cos2x+co...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |