Home
Class 12
MATHS
Let t(1)=(sin alpha)^(cos alpha), t(2)=(...

Let `t_(1)=(sin alpha)^(cos alpha), t_(2)=(sin alpha)^(sin alpha), t_(3)=(cosalpha)^(cos alpha), t_(4)=(cosalpha)^(sin alpha)`, where `alpha in (0, (pi)/(4))`, then which of the following is correct

A

`t_(3) gt t_(1) gt t_(2)`

B

`t_(4) gt t_(2) gt t_(1)`

C

`t_(4) gt t_(1) gt t_(2)`

D

`t_(1) gt t_(3) gt t_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions given for \( t_1, t_2, t_3, \) and \( t_4 \) and compare their values based on the properties of sine and cosine functions in the interval \( \alpha \in (0, \frac{\pi}{4}) \). ### Step-by-Step Solution: 1. **Define the Expressions**: \[ t_1 = (\sin \alpha)^{\cos \alpha}, \quad t_2 = (\sin \alpha)^{\sin \alpha}, \quad t_3 = (\cos \alpha)^{\cos \alpha}, \quad t_4 = (\cos \alpha)^{\sin \alpha} \] 2. **Analyze the Range of Sine and Cosine**: In the interval \( \alpha \in (0, \frac{\pi}{4}) \): - \( \sin \alpha \) is increasing and \( \sin \alpha < \frac{1}{\sqrt{2}} \) - \( \cos \alpha \) is decreasing and \( \cos \alpha > \frac{1}{\sqrt{2}} \) 3. **Compare \( t_1 \) and \( t_2 \)**: - Since \( \sin \alpha < \frac{1}{\sqrt{2}} \) and \( \cos \alpha < 1 \), we can analyze: \[ t_1 = (\sin \alpha)^{\cos \alpha} \quad \text{and} \quad t_2 = (\sin \alpha)^{\sin \alpha} \] - Since \( \sin \alpha < \cos \alpha \) in this interval, and both bases are the same, we can conclude: \[ t_2 > t_1 \quad \text{(since the exponent for \( t_2 \) is larger)} \] 4. **Compare \( t_3 \) and \( t_4 \)**: - Now consider: \[ t_3 = (\cos \alpha)^{\cos \alpha} \quad \text{and} \quad t_4 = (\cos \alpha)^{\sin \alpha} \] - Here, since \( \cos \alpha > \sin \alpha \) and both bases are the same: \[ t_4 > t_3 \quad \text{(since the exponent for \( t_4 \) is smaller)} \] 5. **Final Comparison**: - We have established: \[ t_2 > t_1 \quad \text{and} \quad t_4 > t_3 \] - Since \( \cos \alpha > \sin \alpha \) in the interval \( (0, \frac{\pi}{4}) \), we can also conclude: \[ t_4 > t_2 \] - Thus, we can summarize the relationships: \[ t_4 > t_3 > t_2 > t_1 \] 6. **Conclusion**: - The final order is: \[ t_4 > t_3 > t_2 > t_1 \] - Therefore, the correct option is \( t_4 > t_2 > t_1 \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

Prove that (sinalpha)/(1+cosalpha)+(1+cosalpha)/(sin alpha)=2"cosec "alpha .

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

int(cosalpha)/(a^2+sin^2alpha)d alpha is equal to

1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)alpha

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. Let t(1)=(sin alpha)^(cos alpha), t(2)=(sin alpha)^(sin alpha), t(3)=(...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |