Home
Class 12
MATHS
If 270^@ < theta < 360^@, then sqrt(2 + ...

If `270^@ < theta < 360^@`, then `sqrt(2 + sqrt(2 + 2 cos theta))` is equal to

A

`-2 sin((theta)/(4))`

B

`2 sin((theta)/(4))`

C

`pm2 "sin"(theta)/(4)`

D

`2"cos"(theta)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sqrt{2 + \sqrt{2 + 2 \cos \theta}} \) given that \( 270^\circ < \theta < 360^\circ \), we can follow these steps: ### Step 1: Simplify the Inner Expression We start with the expression inside the square root: \[ \sqrt{2 + 2 \cos \theta} \] Since \( \theta \) is in the fourth quadrant, \( \cos \theta \) is positive. ### Step 2: Factor Out the 2 We can factor out the 2 from the expression: \[ \sqrt{2(1 + \cos \theta)} \] ### Step 3: Use the Cosine Double Angle Identity Recall that \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \). Therefore, we can rewrite the expression as: \[ \sqrt{2 \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)} = \sqrt{4 \cos^2 \left(\frac{\theta}{2}\right)} = 2 \cos \left(\frac{\theta}{2}\right) \] ### Step 4: Substitute Back into the Original Expression Now we substitute this back into the original expression: \[ \sqrt{2 + 2 \cos \left(\frac{\theta}{2}\right)} \] ### Step 5: Simplify Again Again, we can factor out the 2: \[ \sqrt{2(1 + \cos \left(\frac{\theta}{2}\right))} \] Using the same identity as before: \[ 1 + \cos \left(\frac{\theta}{2}\right) = 2 \cos^2 \left(\frac{\theta}{4}\right) \] Thus, we have: \[ \sqrt{2 \cdot 2 \cos^2 \left(\frac{\theta}{4}\right)} = \sqrt{4 \cos^2 \left(\frac{\theta}{4}\right)} = 2 \cos \left(\frac{\theta}{4}\right) \] ### Final Answer The final result is: \[ \sqrt{2 + \sqrt{2 + 2 \cos \theta}} = 2 \cos \left(\frac{\theta}{4}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

A sector has a central angle of 270^(@) and a radius of 2. What is the area of the sector?

An angle measuring 270^(@) is

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

Find the values of: (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Find the values of : (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

If 2sin^(2)x-3=3 cosx and 90^(@) lt x lt 270^(@) , the number of values that satisfy the equation is

Calculate the values of x between 0^(@) and 360 ^(@) which satisfy sin (270^(@) - x) = cos 292 ^(@).

If 90^(@) lt alpha lt 180^(@) and 270^(@) lt beta lt 360^(@) , then which of the following cannot be true?

For a thermocouple, the neutral temperature is 270^(@)C and the temperature of its cold junction is 20^(@)C . If there is no deflection in the galvanometer, the temperature of the hot junction should be

With the cold junction at 0^(@)C the neutral temperature for a thermo-couple is obtained at 270^(@)C . The cold junction temperature is now lowered to -10^(@)C Obta in the (a) neutral temperature (b) the temperature of inversion in this case.

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If 270^@ < theta < 360^@, then sqrt(2 + sqrt(2 + 2 cos theta)) is equa...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |