Home
Class 12
MATHS
If a=sinxcos^3x and b=cosxsin^3x then...

If `a=sinxcos^3x` and `b=cosxsin^3x` then

A

`alpha-beta gt 0, " for all " x " in " (0, (pi)/(4))`

B

`alpha-beta lt 0," for all " x " in "(0, (pi)/(4))`

C

`alpha+beta gt 0, " for all " x " in "(0, (pi)/(2))`

D

`alpha+beta lt 0, " for all "x " in " (0, (pi)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( \alpha - \beta \) and \( \alpha + \beta \) where \( \alpha = \sin x \cos^3 x \) and \( \beta = \cos x \sin^3 x \). ### Step 1: Calculate \( \alpha - \beta \) \[ \alpha - \beta = \sin x \cos^3 x - \cos x \sin^3 x \] ### Step 2: Factor the expression We can factor the expression as follows: \[ \alpha - \beta = \sin x \cos x (\cos^2 x - \sin^2 x) \] ### Step 3: Use the double angle identities Recall the double angle identities: - \( \sin 2x = 2 \sin x \cos x \) - \( \cos 2x = \cos^2 x - \sin^2 x \) Thus, we can rewrite the expression: \[ \alpha - \beta = \frac{1}{2} \sin 2x \cdot \cos 2x \] ### Step 4: Rewrite using sine of a double angle Using the identity \( \sin 2x \cos 2x = \frac{1}{2} \sin 4x \): \[ \alpha - \beta = \frac{1}{4} \sin 4x \] ### Step 5: Analyze the function \( \alpha - \beta \) The function \( \frac{1}{4} \sin 4x \) oscillates between -0.25 and 0.25. We need to check the values of this function in the interval \( [0, \frac{\pi}{4}] \). - At \( x = 0 \): \[ \alpha - \beta = \frac{1}{4} \sin 0 = 0 \] - At \( x = \frac{\pi}{4} \): \[ \alpha - \beta = \frac{1}{4} \sin \pi = 0 \] Since \( \sin 4x \) is positive in the interval \( [0, \frac{\pi}{4}] \), \( \alpha - \beta \) is positive in this range. ### Step 6: Calculate \( \alpha + \beta \) \[ \alpha + \beta = \sin x \cos^3 x + \cos x \sin^3 x \] ### Step 7: Factor the expression We can factor the expression similarly: \[ \alpha + \beta = \sin x \cos x (\cos^2 x + \sin^2 x) \] ### Step 8: Simplify using Pythagorean identity Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ \alpha + \beta = \sin x \cos x \] ### Step 9: Use the double angle identity Again, using the double angle identity: \[ \alpha + \beta = \frac{1}{2} \sin 2x \] ### Step 10: Analyze the function \( \alpha + \beta \) The function \( \frac{1}{2} \sin 2x \) oscillates between -0.5 and 0.5. We need to check the values of this function in the interval \( [0, \frac{\pi}{2}] \). - At \( x = 0 \): \[ \alpha + \beta = \frac{1}{2} \sin 0 = 0 \] - At \( x = \frac{\pi}{2} \): \[ \alpha + \beta = \frac{1}{2} \sin \pi = 0 \] Since \( \sin 2x \) is positive in the interval \( [0, \frac{\pi}{2}] \), \( \alpha + \beta \) is positive in this range. ### Conclusion From the analysis: - \( \alpha - \beta \) is positive in the interval \( [0, \frac{\pi}{4}] \). - \( \alpha + \beta \) is positive in the interval \( [0, \frac{\pi}{2}] \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

intdx/(cosxsin^2x)

d/dx(cosx.sin^-1x)

The number of solutions of the equation sin^3xcosx+sin^2xcos^2x+sinxcos^3x=1 in the interval [0,2pi] is/are 0 (b) 2 (c) 3 (d) infinite

The number of solutions of the equation sin^3xcosx+sin^2xcos^2x+sinxcos^3x=1 in the interval [0,2pi] is/are 0 (b) 2 (c) 3 (d) infinite

Integrate the following function w.r.t.x (i)f(x)=sinxcos3x (ii) f(x)=sin^(3)x (iii)f(x)=(sinx)/(sin(x-alpha))

The number of distinct real roots of the equation sin^(3)x +sin^(2)x + sin x-2cosxsin^2 x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2)) is

int(3sinxcos^2x-sin^3x)dx

If y=sinx.cos(2x) then prove that (dy)/(dx)=y[cotx-2tan2x]

Evaluate: int1/(sinxcos^3x)\ dx

If the equations a x^2+b x+c=0 and x^3+3x^2+3x+2=0 have two common roots, then a. a=b=c b. a=b!=c c. a=-b=c d. none of these.

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-2 : One or More than One Answer is/are Correct
  1. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  2. If 2(cos(x-y)+cos(y-z)+cos(z-x))=-3, then :

    Text Solution

    |

  3. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  4. If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-de...

    Text Solution

    |

  5. If x = X cos theta- Y sin theta, y = X sin theta + Y cos theta and x^2...

    Text Solution

    |

  6. If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan...

    Text Solution

    |

  7. Which of the following real numbers when simplified are neither termi...

    Text Solution

    |

  8. If a=sinxcos^3x and b=cosxsin^3x then

    Text Solution

    |

  9. If (pi)/(2) lt theta lt pi, then possible answers of sqrt(2+sqrt(2+2c...

    Text Solution

    |

  10. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  11. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |

  12. If alpha gt (1)/(sin^(6)x+cos^(6)x) AA x in R, then alpha can be

    Text Solution

    |

  13. If x in (0, (pi)/(2)) and sinx=(3)/(sqrt(10)), Let k=log(10)sinx+log...

    Text Solution

    |

  14. If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C =...

    Text Solution

    |

  15. The value of (sin x-cos x)/(sin^(3)x) is equal to :

    Text Solution

    |

  16. If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

    Text Solution

    |

  17. The range of y=(sin4x-sin2x)/(sin4x+sin2x) satisfies

    Text Solution

    |

  18. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  19. If alpha gt (1)/(sin^(6)x+cos^(6)x) AA x in R, then alpha can be

    Text Solution

    |

  20. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following i...

    Text Solution

    |