Home
Class 12
MATHS
The range of y=(sin4x-sin2x)/(sin4x+sin2...

The range of `y=(sin4x-sin2x)/(sin4x+sin2x)` satisfies

A

`y in (-oo, (1)/(3))`

B

`y in ((1)/(3),1)`

C

`y in (1, 3)`

D

`y in (3, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( y = \frac{\sin 4x - \sin 2x}{\sin 4x + \sin 2x} \), we can follow these steps: ### Step 1: Use the sine subtraction and addition formulas We know that: \[ \sin c - \sin d = 2 \cos\left(\frac{c + d}{2}\right) \sin\left(\frac{c - d}{2}\right) \] \[ \sin c + \sin d = 2 \sin\left(\frac{c + d}{2}\right) \cos\left(\frac{c - d}{2}\right) \] Here, let \( c = 4x \) and \( d = 2x \). ### Step 2: Substitute into the formulas Using the above formulas: \[ \sin 4x - \sin 2x = 2 \cos\left(\frac{4x + 2x}{2}\right) \sin\left(\frac{4x - 2x}{2}\right) = 2 \cos(3x) \sin(x) \] \[ \sin 4x + \sin 2x = 2 \sin\left(\frac{4x + 2x}{2}\right) \cos\left(\frac{4x - 2x}{2}\right) = 2 \sin(3x) \cos(x) \] ### Step 3: Rewrite the function Now substituting these back into the function \( y \): \[ y = \frac{2 \cos(3x) \sin(x)}{2 \sin(3x) \cos(x)} = \frac{\cos(3x) \sin(x)}{\sin(3x) \cos(x)} \] This simplifies to: \[ y = \tan(3x) \cdot \frac{\sin(x)}{\cos(x)} = \tan(3x) \tan(x) \] ### Step 4: Set \( t = \tan(x) \) Let \( t = \tan(x) \). Then: \[ y = \tan(3x) \cdot t \] ### Step 5: Use the tangent triple angle formula The formula for \( \tan(3x) \) is: \[ \tan(3x) = \frac{3t - t^3}{1 - 3t^2} \] Substituting this into our equation for \( y \): \[ y = \frac{3t - t^3}{1 - 3t^2} \cdot t = \frac{3t^2 - t^4}{1 - 3t^2} \] ### Step 6: Analyze the range of \( y \) To find the range of \( y \), we need to analyze the expression: \[ y = \frac{3t^2 - t^4}{1 - 3t^2} \] We can set \( t^2 = u \) (where \( u \geq 0 \)): \[ y = \frac{3u - u^2}{1 - 3u} \] ### Step 7: Find critical points and intervals To find the range, we need to find where the function is defined and where it becomes zero or undefined: 1. The denominator \( 1 - 3u \) must not be zero, so \( u \neq \frac{1}{3} \). 2. The numerator \( 3u - u^2 = 0 \) gives \( u(3 - u) = 0 \) leading to \( u = 0 \) or \( u = 3 \). ### Step 8: Determine the intervals The critical points are \( u = 0 \), \( u = \frac{1}{3} \), and \( u = 3 \). We can test intervals around these points to determine the sign of \( y \): - For \( u < 0 \): Not applicable as \( u \geq 0 \). - For \( 0 < u < \frac{1}{3} \): \( y > 0 \). - For \( u = \frac{1}{3} \): Undefined. - For \( \frac{1}{3} < u < 3 \): \( y < 0 \). - For \( u = 3 \): \( y = 0 \). - For \( u > 3 \): \( y \to -\infty \). ### Step 9: Conclusion The range of \( y \) is: \[ (-\infty, 0) \cup \left(0, \frac{1}{3}\right) \cup (3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/(sin^4x+cos^4x)d x

int (sin2x) dx/(1+sin^4x)

y=x^(sin2x)

int (sin2x)/(sin^4x+cos^4x) dx

int (sin2x)/(sin^4x+cos^4x) dx

int sin x sin2x sin3x

Solve 4 sin x sin 2x sin 4x = sin 3x .

Evaluate: int(cos4x-cos2x)/(sin4x-sin2x)dx

If y= (sinx+cosx)+(sin4x+cos4x)^(2) , then :

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-2 : One or More than One Answer is/are Correct
  1. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  2. If 2(cos(x-y)+cos(y-z)+cos(z-x))=-3, then :

    Text Solution

    |

  3. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  4. If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-de...

    Text Solution

    |

  5. If x = X cos theta- Y sin theta, y = X sin theta + Y cos theta and x^2...

    Text Solution

    |

  6. If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan...

    Text Solution

    |

  7. Which of the following real numbers when simplified are neither termi...

    Text Solution

    |

  8. If a=sinxcos^3x and b=cosxsin^3x then

    Text Solution

    |

  9. If (pi)/(2) lt theta lt pi, then possible answers of sqrt(2+sqrt(2+2c...

    Text Solution

    |

  10. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  11. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |

  12. If alpha gt (1)/(sin^(6)x+cos^(6)x) AA x in R, then alpha can be

    Text Solution

    |

  13. If x in (0, (pi)/(2)) and sinx=(3)/(sqrt(10)), Let k=log(10)sinx+log...

    Text Solution

    |

  14. If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C =...

    Text Solution

    |

  15. The value of (sin x-cos x)/(sin^(3)x) is equal to :

    Text Solution

    |

  16. If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

    Text Solution

    |

  17. The range of y=(sin4x-sin2x)/(sin4x+sin2x) satisfies

    Text Solution

    |

  18. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  19. If alpha gt (1)/(sin^(6)x+cos^(6)x) AA x in R, then alpha can be

    Text Solution

    |

  20. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following i...

    Text Solution

    |