Home
Class 12
MATHS
Find the coodinates of the point of inte...

Find the coodinates of the point of intersection of the curves `y= cos x , y= sin 3x ` if `-(pi)/(2) le x le (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coordinates of the points of intersection of the curves \( y = \cos x \) and \( y = \sin 3x \) within the interval \( -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Set the equations equal to each other To find the points of intersection, we set the two equations equal: \[ \cos x = \sin 3x \] ### Step 2: Use the complementary angle identity Using the identity \( \cos x = \sin\left(\frac{\pi}{2} - x\right) \), we can rewrite the equation: \[ \sin\left(\frac{\pi}{2} - x\right) = \sin 3x \] ### Step 3: Apply the sine difference identity Using the sine difference identity \( \sin A - \sin B = 0 \), we can express this as: \[ \sin 3x - \sin\left(\frac{\pi}{2} - x\right) = 0 \] This can be rewritten as: \[ \sin 3x - \sin\left(\frac{\pi}{2} - x\right) = 0 \] ### Step 4: Use the sine subtraction formula Using the formula \( \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \), we have: \[ 2 \cos\left(\frac{3x + \left(\frac{\pi}{2} - x\right)}{2}\right) \sin\left(\frac{3x - \left(\frac{\pi}{2} - x\right)}{2}\right) = 0 \] ### Step 5: Simplify the expressions Calculating the averages: \[ \frac{3x + \frac{\pi}{2} - x}{2} = \frac{2x + \frac{\pi}{2}}{2} = x + \frac{\pi}{4} \] \[ \frac{3x - \left(\frac{\pi}{2} - x\right)}{2} = \frac{4x - \frac{\pi}{2}}{2} = 2x - \frac{\pi}{4} \] Thus, we have: \[ 2 \cos\left(x + \frac{\pi}{4}\right) \sin\left(2x - \frac{\pi}{4}\right) = 0 \] ### Step 6: Set each factor to zero Setting each factor to zero gives us two equations: 1. \( \cos\left(x + \frac{\pi}{4}\right) = 0 \) 2. \( \sin\left(2x - \frac{\pi}{4}\right) = 0 \) ### Step 7: Solve the first equation For \( \cos\left(x + \frac{\pi}{4}\right) = 0 \): \[ x + \frac{\pi}{4} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] Solving for \( x \): \[ x = \frac{\pi}{2} - \frac{\pi}{4} + n\pi = \frac{\pi}{4} + n\pi \] Considering \( n = 0 \): \[ x = \frac{\pi}{4} \] ### Step 8: Solve the second equation For \( \sin\left(2x - \frac{\pi}{4}\right) = 0 \): \[ 2x - \frac{\pi}{4} = n\pi \quad (n \in \mathbb{Z}) \] Solving for \( x \): \[ 2x = n\pi + \frac{\pi}{4} \implies x = \frac{n\pi}{2} + \frac{\pi}{8} \] Considering \( n = 0 \): \[ x = \frac{\pi}{8} \] Considering \( n = -1 \): \[ x = -\frac{\pi}{2} + \frac{\pi}{8} = -\frac{4\pi}{8} + \frac{\pi}{8} = -\frac{3\pi}{8} \] ### Step 9: Find corresponding \( y \) values Now we find the \( y \) coordinates for the \( x \) values found: 1. For \( x = \frac{\pi}{4} \): \[ y = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Point: \( \left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right) \) 2. For \( x = \frac{\pi}{8} \): \[ y = \cos\left(\frac{\pi}{8}\right) \] Point: \( \left(\frac{\pi}{8}, \cos\left(\frac{\pi}{8}\right)\right) \) 3. For \( x = -\frac{3\pi}{8} \): \[ y = \cos\left(-\frac{3\pi}{8}\right) = \cos\left(\frac{3\pi}{8}\right) \] Point: \( \left(-\frac{3\pi}{8}, \cos\left(\frac{3\pi}{8}\right)\right) \) ### Final Points of Intersection Thus, the points of intersection are: 1. \( \left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right) \) 2. \( \left(\frac{\pi}{8}, \cos\left(\frac{\pi}{8}\right)\right) \) 3. \( \left(-\frac{3\pi}{8}, \cos\left(\frac{3\pi}{8}\right)\right) \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Find the coordinates of the points of intersection of the curves y=cosx , y=sin3x if-pi/2lt=xlt=pi/2

The number of points of intersection of the curves 2y =1 " and " y = "sin" x, -2 pi le x le 2 pi , is

The number of points in interval [ - (pi)/(2) , (pi)/(2)], where the graphs of the curves y = cos x and y= sin 3x , -(pi)/(2) le x le (pi)/(2) intersects is

The area between the curves y=tanx,y=cotx and X-axis in (pi)/(6)le x le (pi)/(3) is

For -(pi)/(2)le x le (pi)/(2) , the number of point of intersection of curves y= cos x and y = sin 3x is

The angle of intersection of the curves y=2\ sin^2x and y=cos2\ x at x=pi/6 is (a) pi//4 (b) pi//2 (c) pi//3 (d) pi//6

Find the area of the region bounded by the x-axis and the curves defined by y = tanx , (where (-pi)/(3) le x le (pi)/(3) ) and y = cotx .(where (pi)/(6) le x le (2pi)/(3) )

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

The angle between the curves y=sin x and y = cos x, 0 lt x lt (pi)/(2) , is

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.