Home
Class 12
MATHS
In a Delta ABC if 9 (a^2 + b^2) = 17c^2 ...

In a `Delta ABC` if `9 (a^2 + b^2) = 17c^2` then the value of the `(cot A + cot B) / cotC` is

A

`(13)/(4)`

B

`(7)/(4)`

C

`(5)/(4)`

D

`(9)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\cot A + \cot B) / \cot C\) given the relationship \(9(a^2 + b^2) = 17c^2\) in triangle \(ABC\). ### Step-by-Step Solution: 1. **Use the Cosine Rule**: The cosine rule states that: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] From the given equation, we can express \(a^2 + b^2\): \[ a^2 + b^2 = \frac{17}{9}c^2 \] 2. **Substituting into Cosine Rule**: Substitute \(a^2 + b^2\) into the cosine rule: \[ \cos C = \frac{\frac{17}{9}c^2 - c^2}{2ab} \] Simplifying the numerator: \[ \cos C = \frac{\frac{17}{9}c^2 - \frac{9}{9}c^2}{2ab} = \frac{\frac{8}{9}c^2}{2ab} = \frac{4c^2}{9ab} \] 3. **Express Cotangents**: Recall the definitions: \[ \cot A = \frac{\cos A}{\sin A}, \quad \cot B = \frac{\cos B}{\sin B}, \quad \cot C = \frac{\cos C}{\sin C} \] Therefore, we can express \(\cot A + \cot B\): \[ \cot A + \cot B = \frac{\cos A}{\sin A} + \frac{\cos B}{\sin B} = \frac{\cos A \sin B + \sin A \cos B}{\sin A \sin B} = \frac{\sin(A + B)}{\sin A \sin B} \] Since \(A + B + C = 180^\circ\), we have \(A + B = 180^\circ - C\), thus: \[ \sin(A + B) = \sin C \] So, \[ \cot A + \cot B = \frac{\sin C}{\sin A \sin B} \] 4. **Substituting into the Final Expression**: Now, we can write: \[ \frac{\cot A + \cot B}{\cot C} = \frac{\frac{\sin C}{\sin A \sin B}}{\frac{\cos C}{\sin C}} = \frac{\sin^2 C}{\sin A \sin B \cos C} \] 5. **Using the Sine Rule**: From the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] This gives: \[ \frac{\sin C}{\sin A} = \frac{c}{a}, \quad \frac{\sin C}{\sin B} = \frac{c}{b} \] Thus, \[ \sin A = \frac{a \sin C}{c}, \quad \sin B = \frac{b \sin C}{c} \] Therefore: \[ \sin A \sin B = \frac{ab \sin^2 C}{c^2} \] 6. **Substituting Back**: Substitute \(\sin A \sin B\) into the expression: \[ \frac{\sin^2 C}{\sin A \sin B \cos C} = \frac{\sin^2 C}{\frac{ab \sin^2 C}{c^2} \cdot \cos C} = \frac{c^2}{ab \cos C} \] 7. **Substituting \(\cos C\)**: We already found that \(\cos C = \frac{4c^2}{9ab}\), so: \[ \frac{c^2}{ab \cdot \frac{4c^2}{9ab}} = \frac{c^2 \cdot 9ab}{4c^2} = \frac{9}{4} \] ### Final Answer: Thus, the value of \(\frac{\cot A + \cot B}{\cot C}\) is: \[ \boxed{\frac{9}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

If A + B + C=pi , then find the minimum value of cot^2A + cot^2B + cot^2C

In a triangle ABC, if r_1 + r_3 + r = r_2 , then find the value of (sec^2 A + csc^2 B-cot^2 C) ,

In a triangle ABC , if b^2 + c^2 = 3a^2 , then cotB + cotC-cotA is equal to

In a Delta ABC tan ""A/2, tan ""B/2, tan ""C/2 are in H.P., then the vlaue iof cot ""A/2 cot ""C/2 is :

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In a DeltaABC , 2 Delta (cot B + cot C)=

If three sides a,b,c of a triangle ABC are in arithmetic progression, then the value of cot(A/2), cot(B/2), cot(C/2) are in

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

In Delta ABC , if a = 10 and b cot B + c cot C = 2(r + R) then the maximum area of DeltaABC will be

In a DeltaABC, P and Q are the mid-points of AB and AC respectively. If O is the circumcentre of the Delta ABC, then the value of (("Area of "Delta ABC)/("Area of " Delta OPQ)) cot B cot C equal to