Home
Class 12
MATHS
In a triangle ABC the expression acosBc...

In a triangle ABC the expression `acosBcosC+bcosC cosA+c cosA cosB` equals to :

A

`(rs)/(R )`

B

`(r )/(sR)`

C

`(R )/(rs)`

D

`(Rs)/(r )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( A \cos B \cos C + B \cos C \cos A + C \cos A \cos B \) in triangle \( ABC \), we will follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ E = A \cos B \cos C + B \cos C \cos A + C \cos A \cos B \] ### Step 2: Factor Out Common Terms We can factor out \( \cos A \cos B \cos C \) from the expression: \[ E = \cos A \cos B \cos C \left( \frac{A}{\cos A} + \frac{B}{\cos B} + \frac{C}{\cos C} \right) \] ### Step 3: Use the Sine Rule According to the sine rule, we have: \[ \frac{A}{\sin A} = \frac{B}{\sin B} = \frac{C}{\sin C} = 2R \] where \( R \) is the circumradius of triangle \( ABC \). Thus, we can express \( A, B, C \) in terms of \( R \) and sine: \[ A = 2R \sin A, \quad B = 2R \sin B, \quad C = 2R \sin C \] ### Step 4: Substitute into the Expression Substituting these into our expression gives: \[ E = \cos A \cos B \cos C \left( 2R \frac{\sin A}{\cos A} + 2R \frac{\sin B}{\cos B} + 2R \frac{\sin C}{\cos C} \right) \] This simplifies to: \[ E = 2R \cos A \cos B \cos C \left( \tan A + \tan B + \tan C \right) \] ### Step 5: Use the Identity for Tangents Using the identity: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \] we can rewrite the expression as: \[ E = 2R \cos A \cos B \cos C \cdot \tan A \tan B \tan C \] ### Step 6: Substitute Tangent Values Substituting the tangent values: \[ \tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B}, \quad \tan C = \frac{\sin C}{\cos C} \] we can simplify further: \[ E = 2R \cdot \frac{\sin A \sin B \sin C}{\cos A \cos B \cos C} \] ### Step 7: Final Expression Using the sine rule again, we can express \( \sin A, \sin B, \sin C \) in terms of \( A, B, C \): \[ E = 2R \cdot \frac{A}{2R} \cdot \frac{B}{2R} \cdot \frac{C}{2R} = \frac{ABC}{4R} \] ### Conclusion Thus, the final value of the expression \( A \cos B \cos C + B \cos C \cos A + C \cos A \cos B \) is: \[ \frac{ABC}{4R} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC the expression a cosB cosC+b cosA cosB equals to :

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

(1-cosA)/(sinA) is equal to ?

In a triangle ABC cosA+cosB+cosC<=k then k=

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C

In a triangle ABC, the value of cosA/sinBsinC ​ + cosB/sinCsinA ​ + cosC/sinAsinB ​

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

In any A B C ,2(bc cosA+ ca cosB+ab cosC) =