Home
Class 12
MATHS
If in DeltaABC, a = 5, b = 4 and cos (...

If in `DeltaABC, a = 5, b = 4 and cos (A - B) = 31/32`, then side c is

A

`sqrt(6)`

B

`6sqrt(6)`

C

6

D

`(216)^(1//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the side \( c \) in triangle \( ABC \) given \( a = 5 \), \( b = 4 \), and \( \cos(A - B) = \frac{31}{32} \), we can follow these steps: ### Step 1: Use the cosine of the angle difference We know that: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Since we have \( \cos(A - B) = \frac{31}{32} \), we will need to find \( \sin A \) and \( \sin B \) using the sides \( a \) and \( b \). ### Step 2: Use the tangent half-angle formula Using the formula for \( \tan\left(\frac{A - B}{2}\): \[ \tan\left(\frac{A - B}{2}\right) = \sqrt{\frac{1 - \cos(A - B)}{1 + \cos(A - B)}} \] Substituting \( \cos(A - B) = \frac{31}{32} \): \[ \tan\left(\frac{A - B}{2}\right) = \sqrt{\frac{1 - \frac{31}{32}}{1 + \frac{31}{32}} = \sqrt{\frac{\frac{1}{32}}{\frac{63}{32}} = \sqrt{\frac{1}{63}} = \frac{1}{\sqrt{63}} \] ### Step 3: Relate \( \tan\left(\frac{A - B}{2}\) to \( A \) and \( B \) From the tangent half-angle formula: \[ \tan\left(\frac{A - B}{2}\right) = \frac{a - b}{a + b} \cdot \cot\left(\frac{C}{2} \] Substituting \( a = 5 \) and \( b = 4 \): \[ \frac{5 - 4}{5 + 4} \cdot \cot\left(\frac{C}{2} = \frac{1}{9} \cdot \cot\left(\frac{C}{2} \] Setting this equal to \( \frac{1}{\sqrt{63}} \): \[ \frac{1}{9} \cdot \cot\left(\frac{C}{2} = \frac{1}{\sqrt{63}} \] Solving for \( \cot\left(\frac{C}{2} \): \[ \cot\left(\frac{C}{2} = \frac{9}{\sqrt{63}} = \frac{9\sqrt{63}}{63} = \frac{3\sqrt{7}}{7} \] ### Step 4: Find \( \tan\left(\frac{C}{2}\) Using the identity \( \tan\left(\frac{C}{2}\) is the reciprocal of \( \cot\left(\frac{C}{2}\): \[ \tan\left(\frac{C}{2} = \frac{7}{3\sqrt{7}} = \frac{7\sqrt{7}}{21} = \frac{\sqrt{7}}{3} \] ### Step 5: Use the cosine rule to find \( c \) Using the cosine rule: \[ c^2 = a^2 + b^2 - 2ab \cos C \] We need to find \( \cos C \) using: \[ \cos C = \frac{1 - \tan^2\left(\frac{C}{2}}{1 + \tan^2\left(\frac{C}{2}} \] Substituting \( \tan\left(\frac{C}{2} = \frac{\sqrt{7}}{3}: \[ \cos C = \frac{1 - \left(\frac{7}{9}\right)}{1 + \left(\frac{7}{9}\right)} = \frac{2}{16/9} = \frac{1}{8} \] ### Step 6: Substitute values into the cosine rule Now substituting \( a = 5 \), \( b = 4 \), and \( \cos C = \frac{1}{8} \): \[ c^2 = 5^2 + 4^2 - 2 \cdot 5 \cdot 4 \cdot \frac{1}{8} \] Calculating: \[ c^2 = 25 + 16 - \frac{40}{8} = 25 + 16 - 5 = 36 \] Thus, \[ c = \sqrt{36} = 6 \] ### Final Answer The length of side \( c \) is \( 6 \). ---
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , If in a DeltaABC , a = 6, b = 3 and cos(A-B)=4/5 , find its area.

In a DeltaABC , if a = 3, b = 5 and c = 7, find cos c

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In triangle ABC, a=5, b=4 and cos(A+B)=(31)/(32) In this triangle, c=

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

In DeltaABC , if a=25, b = 52 and c =63 , find cos A

In any DeltaABC , a cos A +b cos B + c cos C =

In DeltaABC , a=3, b=4 and c=5, evaluate sin2C.

If in a DeltaABC, sin A =sin^(2) B and 2 cos ^(2)A=3 cos ^(2) B, then the DeltaABC is