Home
Class 12
MATHS
In triangle ABC if A:B:C=1:2:4," then "...

In triangle ABC if `A:B:C=1:2:4," then " (a^(2)-b^(2))(b^(2)-c^(2))(c^(2)-a^(2))=lambda a^(2)b^(2)c^(2)`, where `lambda=`
(where notations have their usual meaning)

A

1

B

2

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) in the equation: \[ (a^2 - b^2)(b^2 - c^2)(c^2 - a^2) = \lambda a^2 b^2 c^2 \] given the ratio \( A : B : C = 1 : 2 : 4 \). ### Step-by-Step Solution: 1. **Assign Variables Based on the Ratio**: Let \( A = x \), \( B = 2x \), and \( C = 4x \). The angles in triangle ABC are \( A, B, C \). 2. **Use the Angle Sum Property**: Since the angles of a triangle sum up to \( \pi \): \[ A + B + C = \pi \implies x + 2x + 4x = \pi \implies 7x = \pi \implies x = \frac{\pi}{7} \] Thus, \[ A = \frac{\pi}{7}, \quad B = \frac{2\pi}{7}, \quad C = \frac{4\pi}{7} \] 3. **Apply the Law of Sines**: According to the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \] Therefore, \[ a = k \sin A = k \sin\left(\frac{\pi}{7}\right), \quad b = k \sin\left(\frac{2\pi}{7}\right), \quad c = k \sin\left(\frac{4\pi}{7}\right) \] 4. **Calculate \( a^2, b^2, c^2 \)**: \[ a^2 = k^2 \sin^2\left(\frac{\pi}{7}\right), \quad b^2 = k^2 \sin^2\left(\frac{2\pi}{7}\right), \quad c^2 = k^2 \sin^2\left(\frac{4\pi}{7}\right) \] 5. **Substitute into the Left-Hand Side (LHS)**: \[ LHS = (a^2 - b^2)(b^2 - c^2)(c^2 - a^2) \] Substitute the expressions for \( a^2, b^2, c^2 \): \[ LHS = (k^2 \sin^2\left(\frac{\pi}{7}\right) - k^2 \sin^2\left(\frac{2\pi}{7}\right))(k^2 \sin^2\left(\frac{2\pi}{7}\right) - k^2 \sin^2\left(\frac{4\pi}{7}\right))(k^2 \sin^2\left(\frac{4\pi}{7}\right) - k^2 \sin^2\left(\frac{\pi}{7}\right)) \] Factor out \( k^6 \): \[ LHS = k^6 \left( \sin^2\left(\frac{\pi}{7}\right) - \sin^2\left(\frac{2\pi}{7}\right) \right) \left( \sin^2\left(\frac{2\pi}{7}\right) - \sin^2\left(\frac{4\pi}{7}\right) \right) \left( \sin^2\left(\frac{4\pi}{7}\right) - \sin^2\left(\frac{\pi}{7}\right) \right) \] 6. **Use the Identity for Sine Differences**: The identity \( \sin^2 A - \sin^2 B = (\sin(A + B) \sin(A - B)) \) can be applied: \[ \sin^2\left(\frac{\pi}{7}\right) - \sin^2\left(\frac{2\pi}{7}\right) = \sin\left(\frac{3\pi}{7}\right) \sin\left(-\frac{\pi}{7}\right) \] Similar calculations apply for the other terms. 7. **Combine and Simplify**: After applying the sine difference identities to all three terms, we can express the LHS in terms of products of sine functions. 8. **Equate to the Right-Hand Side (RHS)**: The RHS is given as \( \lambda a^2 b^2 c^2 \): \[ RHS = \lambda (k^2 \sin^2\left(\frac{\pi}{7}\right))(k^2 \sin^2\left(\frac{2\pi}{7}\right))(k^2 \sin^2\left(\frac{4\pi}{7}\right)) = \lambda k^6 \sin^2\left(\frac{\pi}{7}\right) \sin^2\left(\frac{2\pi}{7}\right) \sin^2\left(\frac{4\pi}{7}\right) \] 9. **Solve for \( \lambda \)**: By comparing the coefficients from LHS and RHS, we can determine the value of \( \lambda \). ### Final Answer: After performing the calculations, we find that \( \lambda = 1 \).
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a triangle ! ABC, a^2cos^2A=b^2+c^2 then

For Delta ABC, if 81 + 144 a ^(4) + 16b ^(4) + 9c ^(4) =144 abc, (where notations have their usual meaning), then :

In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In a triangle ABC, 2B= A + C and b^(2) = ac , then (a(a+b+c))/(3bc) is

In a triangle ABC if a, b, c are in A.P. and C-A=120^(@) , then (s)/(r )= (where notations have their usual meaning)

In a DeltaABC, bcos^(2)'(A)/(2) + acos^(2)"(B)/(2) = (3)/(2)c , then a, c, b in (with usual notations)

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to