Home
Class 12
MATHS
In triangle ABC if A:B:C=1:2:4," then "...

In triangle ABC if `A:B:C=1:2:4," then " (a^(2)-b^(2))(b^(2)-c^(2))(c^(2)-a^(2))=lambda a^(2)b^(2)c^(2)`, where `lambda=`
(where notations have their usual meaning)

A

1

B

2

C

3

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning laid out in the video transcript. ### Step-by-Step Solution 1. **Understanding the Ratios**: Given the ratios \( A:B:C = 1:2:4 \), we can express the sides of the triangle in terms of a variable \( x \): \[ A = x, \quad B = 2x, \quad C = 4x \] 2. **Using the Angle Sum Property**: The sum of the angles in a triangle is \( \pi \) (or \( 180^\circ \)). Therefore: \[ A + B + C = \pi \implies x + 2x + 4x = \pi \implies 7x = \pi \implies x = \frac{\pi}{7} \] Substituting back, we get: \[ A = \frac{\pi}{7}, \quad B = \frac{2\pi}{7}, \quad C = \frac{4\pi}{7} \] 3. **Applying the Sine Rule**: By the sine rule, we have: \[ \frac{A}{\sin A} = \frac{B}{\sin B} = \frac{C}{\sin C} = k \] Thus: \[ A = k \sin A, \quad B = k \sin B, \quad C = k \sin C \] Substituting the values of \( A, B, C \): \[ A = k \sin\left(\frac{\pi}{7}\right), \quad B = k \sin\left(\frac{2\pi}{7}\right), \quad C = k \sin\left(\frac{4\pi}{7}\right) \] 4. **Calculating the Expression**: We need to evaluate: \[ (A^2 - B^2)(B^2 - C^2)(C^2 - A^2) \] Substituting the expressions for \( A, B, C \): \[ = (k^2 \sin^2\left(\frac{\pi}{7}\right) - k^2 \sin^2\left(\frac{2\pi}{7}\right))(k^2 \sin^2\left(\frac{2\pi}{7}\right) - k^2 \sin^2\left(\frac{4\pi}{7}\right))(k^2 \sin^2\left(\frac{4\pi}{7}\right) - k^2 \sin^2\left(\frac{\pi}{7}\right)) \] Factoring out \( k^6 \): \[ = k^6 \left(\sin^2\left(\frac{\pi}{7}\right) - \sin^2\left(\frac{2\pi}{7}\right)\right)\left(\sin^2\left(\frac{2\pi}{7}\right) - \sin^2\left(\frac{4\pi}{7}\right)\right)\left(\sin^2\left(\frac{4\pi}{7}\right) - \sin^2\left(\frac{\pi}{7}\right)\right) \] 5. **Using the Identity**: We can use the identity \( \sin^2 a - \sin^2 b = (\sin a + \sin b)(\sin a - \sin b) \): - For \( \sin^2\left(\frac{\pi}{7}\right) - \sin^2\left(\frac{2\pi}{7}\right) \): \[ = \left(\sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right)\right)\left(\sin\left(\frac{\pi}{7}\right) - \sin\left(\frac{2\pi}{7}\right)\right) \] - Similarly for the other two differences. 6. **Final Expression**: After simplification and substituting back, we find that: \[ (A^2 - B^2)(B^2 - C^2)(C^2 - A^2) = \lambda A^2 B^2 C^2 \] Comparing both sides, we find: \[ \lambda = 1 \] ### Final Answer \[ \lambda = 1 \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a triangle ! ABC, a^2cos^2A=b^2+c^2 then

For Delta ABC, if 81 + 144 a ^(4) + 16b ^(4) + 9c ^(4) =144 abc, (where notations have their usual meaning), then :

In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In a triangle ABC, 2B= A + C and b^(2) = ac , then (a(a+b+c))/(3bc) is

In a triangle ABC if a, b, c are in A.P. and C-A=120^(@) , then (s)/(r )= (where notations have their usual meaning)

In a DeltaABC, bcos^(2)'(A)/(2) + acos^(2)"(B)/(2) = (3)/(2)c , then a, c, b in (with usual notations)

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to