Home
Class 12
MATHS
The value(s) of mu for which the straigh...

The value(s) of `mu` for which the straight lines `vecr=3hati-2hatj-4hatk+lambda_(1)(hati-hatj+mu hatk)` and `vec r=5hati-2hatj+hatk+lambda_(2)(hati+mu hatj+2hatk)` are coplanar is/are :

A

`(5+sqrt(33))/(4)`

B

`(-5+sqrt(33))/(4)`

C

`(5-sqrt(33))/(4)`

D

`(-5-sqrt(33))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value(s) of \( \mu \) for which the given lines are coplanar, we will follow these steps: ### Step 1: Identify the lines in vector form The equations of the lines are given as: 1. \( \vec{r_1} = 3\hat{i} - 2\hat{j} - 4\hat{k} + \lambda_1(\hat{i} - \hat{j} + \mu \hat{k}) \) 2. \( \vec{r_2} = 5\hat{i} - 2\hat{j} + \hat{k} + \lambda_2(\hat{i} + \mu \hat{j} + 2\hat{k}) \) ### Step 2: Identify points and direction vectors From the equations, we can identify: - For line 1: - Point \( A_1 = 3\hat{i} - 2\hat{j} - 4\hat{k} \) - Direction vector \( \vec{B_1} = \hat{i} - \hat{j} + \mu \hat{k} \) - For line 2: - Point \( A_2 = 5\hat{i} - 2\hat{j} + \hat{k} \) - Direction vector \( \vec{B_2} = \hat{i} + \mu \hat{j} + 2\hat{k} \) ### Step 3: Calculate \( A_2 - A_1 \) We compute: \[ A_2 - A_1 = (5\hat{i} - 2\hat{j} + \hat{k}) - (3\hat{i} - 2\hat{j} - 4\hat{k}) \] Calculating this gives: \[ A_2 - A_1 = (5 - 3)\hat{i} + (-2 + 2)\hat{j} + (1 + 4)\hat{k} = 2\hat{i} + 0\hat{j} + 5\hat{k} = 2\hat{i} + 5\hat{k} \] ### Step 4: Calculate \( \vec{B_1} \times \vec{B_2} \) Next, we calculate the cross product: \[ \vec{B_1} = \hat{i} - \hat{j} + \mu \hat{k} \] \[ \vec{B_2} = \hat{i} + \mu \hat{j} + 2\hat{k} \] The cross product \( \vec{B_1} \times \vec{B_2} \) is calculated using the determinant: \[ \vec{B_1} \times \vec{B_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & \mu \\ 1 & \mu & 2 \end{vmatrix} \] Calculating this determinant gives: \[ \hat{i} \left((-1)(2) - (\mu)(\mu)\right) - \hat{j} \left((1)(2) - (1)(\mu)\right) + \hat{k} \left((1)(\mu) - (-1)(1)\right) \] This simplifies to: \[ \hat{i}(-2 - \mu^2) - \hat{j}(2 - \mu) + \hat{k}(\mu + 1) \] Thus, \[ \vec{B_1} \times \vec{B_2} = (-2 - \mu^2)\hat{i} - (2 - \mu)\hat{j} + (\mu + 1)\hat{k} \] ### Step 5: Use the coplanarity condition The lines are coplanar if: \[ (A_2 - A_1) \cdot (\vec{B_1} \times \vec{B_2}) = 0 \] Substituting \( A_2 - A_1 = 2\hat{i} + 5\hat{k} \): \[ (2\hat{i} + 5\hat{k}) \cdot \left((-2 - \mu^2)\hat{i} - (2 - \mu)\hat{j} + (\mu + 1)\hat{k}\right) = 0 \] Calculating the dot product: \[ 2(-2 - \mu^2) + 5(\mu + 1) = 0 \] This expands to: \[ -4 - 2\mu^2 + 5\mu + 5 = 0 \implies -2\mu^2 + 5\mu + 1 = 0 \] Multiplying through by -1 gives: \[ 2\mu^2 - 5\mu - 1 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula: \[ \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2, b = -5, c = -1 \): \[ \mu = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] Calculating the discriminant: \[ \mu = \frac{5 \pm \sqrt{25 + 8}}{4} = \frac{5 \pm \sqrt{33}}{4} \] Thus, the values of \( \mu \) are: \[ \mu = \frac{5 + \sqrt{33}}{4} \quad \text{and} \quad \mu = \frac{5 - \sqrt{33}}{4} \] ### Final Answer The values of \( \mu \) for which the lines are coplanar are: \[ \mu = \frac{5 + \sqrt{33}}{4} \quad \text{and} \quad \mu = \frac{5 - \sqrt{33}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+lamda(2hati+hatj=2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

The lines vecr=(2hati-3hatj+7hatk)+lamda(2hati+phatj+5hatk) and vecr=(hati+2hatj+3hatk)+mu(3hati+phatj+phatk) are perpendicular it p=

Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .

Find the shortest distance between lines vecr = 6hati+2hatj+2hatk+lambda(hati-2hatj+2hatk) and vecr = -4hati-hatk +mu(3hati-2hatj-2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the line vecr=(hati+2hatj-hatk)+lamda(hati-hatj+hatk) and the plane ver.(2hati-hatj+hatk)=4

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines: L1:(x-2)/1=(y-1)/7=(z+2)/-5, L2:x-4=y+3=-z Then wh...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx[(veca-hatj)xxhati]xx[(veca-hatk)xxhatj]+veckxx[(veca-veci)x...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  8. If vec a ,vec b,vec c and vec d are the position vectors of the point...

    Text Solution

    |

  9. If OAB is a tetrahedron with edges and hatp, hatq, hatr are unit vect...

    Text Solution

    |

  10. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  11. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  12. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  13. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  14. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  15. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  16. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  17. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  18. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  19. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  20. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |