Home
Class 12
MATHS
Let a be a real number and vec alpha = h...

Let a be a real number and `vec alpha = hati +2hatj, vec beta=2hati+a hatj+10 hatk, vec gamma=12hati+20hatj+a hatk` be three vectors, then `vec alpha, vec beta and vec gamma` are linearly independent for :

A

`a gt 0`

B

`a lt 0`

C

`a=0`

D

No value of a

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) for which the vectors \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \) are linearly independent, we need to check the condition for linear independence using the determinant of the matrix formed by these vectors. ### Step 1: Write down the vectors We have: \[ \vec{\alpha} = \hat{i} + 2\hat{j} + 0\hat{k} = (1, 2, 0) \] \[ \vec{\beta} = 2\hat{i} + a\hat{j} + 10\hat{k} = (2, a, 10) \] \[ \vec{\gamma} = 12\hat{i} + 20\hat{j} + a\hat{k} = (12, 20, a) \] ### Step 2: Form the matrix We form the matrix \( M \) using these vectors as rows: \[ M = \begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 10 \\ 12 & 20 & a \end{pmatrix} \] ### Step 3: Calculate the determinant of the matrix To check for linear independence, we need to find the determinant of \( M \) and set it equal to zero: \[ \text{det}(M) = \begin{vmatrix} 1 & 2 & 0 \\ 2 & a & 10 \\ 12 & 20 & a \end{vmatrix} \] Using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(M) = 1 \cdot \begin{vmatrix} a & 10 \\ 20 & a \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 10 \\ 12 & a \end{vmatrix} + 0 \] Calculating the first determinant: \[ \begin{vmatrix} a & 10 \\ 20 & a \end{vmatrix} = a^2 - 200 \] Calculating the second determinant: \[ \begin{vmatrix} 2 & 10 \\ 12 & a \end{vmatrix} = 2a - 120 \] Putting it all together: \[ \text{det}(M) = 1(a^2 - 200) - 2(2a - 120) \] \[ = a^2 - 200 - 4a + 240 \] \[ = a^2 - 4a + 40 \] ### Step 4: Set the determinant to zero To find the values of \( a \) for which the vectors are linearly independent, we set the determinant to zero: \[ a^2 - 4a + 40 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -4, c = 40 \): \[ a = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 40}}{2 \cdot 1} \] \[ = \frac{4 \pm \sqrt{16 - 160}}{2} \] \[ = \frac{4 \pm \sqrt{-144}}{2} \] \[ = \frac{4 \pm 12i}{2} \] \[ = 2 \pm 6i \] Since the roots are complex, the determinant can never be zero for real values of \( a \). Therefore, the vectors are linearly independent for all real values of \( a \). ### Conclusion The vectors \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \) are linearly independent for all real numbers \( a \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=hati+hatj+hatk , then (vec(alpha)xxvec(beta)).(vec(alpha)xxvec(gamma)) is equal to

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

Let veca=2hati-3hatj and vecb=3hati+2hatj. Is |veca|=|vecb|? Are the vectors vec a and vec b equal?

Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(gamma)=chati+ahatj+bhatk be three coplnar vectors with a!=b , and vecv=hati+hatj+hatk . Then vecv is perpendicular to

Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(gamma)=chati+ahatj+bhatk be three coplnar vectors with a!=b , and vecv=hati+hatj+hatk . Then vecv is perpendicular to

If vec a = hati + 2 hatj + 2 hat k and vec b = 3 hati + 6 hatj + 2 hat k then the vector in the direction of vec a and having mgnitude as |vec b| is

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines: L1:(x-2)/1=(y-1)/7=(z+2)/-5, L2:x-4=y+3=-z Then wh...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx[(veca-hatj)xxhati]xx[(veca-hatk)xxhatj]+veckxx[(veca-veci)x...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  8. If vec a ,vec b,vec c and vec d are the position vectors of the point...

    Text Solution

    |

  9. If OAB is a tetrahedron with edges and hatp, hatq, hatr are unit vect...

    Text Solution

    |

  10. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  11. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  12. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  13. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  14. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  15. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  16. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  17. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  18. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  19. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  20. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |