Home
Class 12
MATHS
The lines with vector equations are, ve...

The lines with vector equations are, `vecr_(1)=3hati+6hatj+lambda(-4hati+3hatj+2hatk) and vecr_(2)=-2hati+7hatj+mu(-4hati+hatj+hatk)` are such that :

A

they are coplanar

B

they do not intersect

C

they are skew

D

the angle between then is `tan^(-1)(3//7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the coplanarity and angle between the given lines with vector equations, we will follow these steps: ### Given: 1. Line 1: \(\vec{r_1} = 3\hat{i} + 6\hat{j} + \lambda(-4\hat{i} + 3\hat{j} + 2\hat{k})\) 2. Line 2: \(\vec{r_2} = -2\hat{i} + 7\hat{j} + \mu(-4\hat{i} + \hat{j} + \hat{k})\) ### Step 1: Identify the direction vectors and points on the lines - For Line 1, the point \(\vec{A} = 3\hat{i} + 6\hat{j}\) and the direction vector \(\vec{b_1} = -4\hat{i} + 3\hat{j} + 2\hat{k}\). - For Line 2, the point \(\vec{B} = -2\hat{i} + 7\hat{j}\) and the direction vector \(\vec{b_2} = -4\hat{i} + \hat{j} + \hat{k}\). ### Step 2: Check for coplanarity To check if the lines are coplanar, we can use the scalar triple product. The lines are coplanar if: \[ (\vec{B} - \vec{A}) \cdot (\vec{b_1} \times \vec{b_2}) = 0 \] Calculate \(\vec{B} - \vec{A}\): \[ \vec{B} - \vec{A} = (-2 - 3)\hat{i} + (7 - 6)\hat{j} + (0 - 0)\hat{k} = -5\hat{i} + 1\hat{j} + 0\hat{k} \] Now, compute \(\vec{b_1} \times \vec{b_2}\): \[ \vec{b_1} = -4\hat{i} + 3\hat{j} + 2\hat{k}, \quad \vec{b_2} = -4\hat{i} + 1\hat{j} + 1\hat{k} \] Using the determinant to find the cross product: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -4 & 3 & 2 \\ -4 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(3 \cdot 1 - 2 \cdot 1) - \hat{j}(-4 \cdot 1 - 2 \cdot -4) + \hat{k}(-4 \cdot 1 - 3 \cdot -4) \] \[ = \hat{i}(3 - 2) - \hat{j}(-4 + 8) + \hat{k}(-4 + 12) \] \[ = \hat{i}(1) - \hat{j}(4) + \hat{k}(8) = \hat{i} - 4\hat{j} + 8\hat{k} \] Now compute the dot product: \[ (\vec{B} - \vec{A}) \cdot (\vec{b_1} \times \vec{b_2}) = (-5\hat{i} + 1\hat{j} + 0\hat{k}) \cdot (1\hat{i} - 4\hat{j} + 8\hat{k}) = -5 \cdot 1 + 1 \cdot -4 + 0 \cdot 8 = -5 - 4 + 0 = -9 \] Since the result is not zero, the lines are **not coplanar**. ### Step 3: Determine if the lines are skew Since the lines are not coplanar and do not intersect, they are skew lines. ### Step 4: Find the angle between the lines The angle \(\theta\) between the two lines can be found using the formula: \[ \cos \theta = \frac{|\vec{b_1} \cdot \vec{b_2}|}{|\vec{b_1}| |\vec{b_2}|} \] Calculating \(\vec{b_1} \cdot \vec{b_2}\): \[ \vec{b_1} \cdot \vec{b_2} = (-4)(-4) + (3)(1) + (2)(1) = 16 + 3 + 2 = 21 \] Calculating the magnitudes: \[ |\vec{b_1}| = \sqrt{(-4)^2 + 3^2 + 2^2} = \sqrt{16 + 9 + 4} = \sqrt{29} \] \[ |\vec{b_2}| = \sqrt{(-4)^2 + 1^2 + 1^2} = \sqrt{16 + 1 + 1} = \sqrt{18} \] Now substituting into the cosine formula: \[ \cos \theta = \frac{21}{\sqrt{29} \cdot \sqrt{18}} = \frac{21}{\sqrt{522}} = \frac{21}{3\sqrt{58}} = \frac{7}{\sqrt{58}} \] ### Step 5: Find \(\tan \theta\) Using the relationship between sine and cosine: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Let \(\cos \theta = \frac{7}{\sqrt{58}}\), then: \[ \sin^2 \theta = 1 - \left(\frac{7}{\sqrt{58}}\right)^2 = 1 - \frac{49}{58} = \frac{9}{58} \] \[ \sin \theta = \frac{3}{\sqrt{58}} \] Now, \(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{\sqrt{58}}}{\frac{7}{\sqrt{58}}} = \frac{3}{7}\) Thus, the angle between the lines is: \[ \theta = \tan^{-1}\left(\frac{3}{7}\right) \] ### Conclusion 1. The lines are **not coplanar** and are **skew**. 2. The angle between the lines is \(\tan^{-1}\left(\frac{3}{7}\right)\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines l_(1)and l_(1) whose vector equations are vecr=(hati+hatj) + lambda (3hati + 4hatj - 2hatk) …(i) and vecr=(2hati+3hatj) + mu (6hati + 8hatj - 4hatk) …(ii)

Find the vector equation of the plane in which the lines vecr=hati+hatj+lambda(hati+2hatj-hatk) and vecr=(hati+hatj)+mu(-hati+hatj-2hatk) lie.

Find the vector equation of the plane in which the lines vecr=hati+hatj+lambda(hati+2hatj-hatk) and vecr=(hati+hatj)+mu(-hati+hatj-2hatk) lie.

Find the shortest distance between the two lines whose vector equations are given by: vecr=hati+2hatj+3hatk+lamda(2hati+3hatj+4hatk) and vecr=2hati+4hatj+5hatk+mu(3hati+4hatj+5hatk)

The line whose vector equation are vecr =2 hati - 3 hatj + 7 hatk + lamda (2 hati + p hatj + 5 hatk) and vecr = hati - 2 hatj + 3 hatk+ mu (3 hati - p hatj + p hatk) are perpendicular for all values of gamma and mu if p equals :

Find the shortest distance between the lines l_(1) and l_(2) whose vector equation are vecr =lambda (2hati+ 3hatj+ 4hatk) and vecr=(2hati+3hatj)+mu(2hati+3hatj+ 4hatk)

Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .

Find the angle between the lines vecr = (hati+hatj)+lambda(3hati+2hatj+6hatk) and vecr = (hati-hatk) + mu(hati+2hatj+2hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hatk) and vevr=hati-hatj+2hatk-mu(2hati+4hatj-4hatk)

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines: L1:(x-2)/1=(y-1)/7=(z+2)/-5, L2:x-4=y+3=-z Then wh...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx[(veca-hatj)xxhati]xx[(veca-hatk)xxhatj]+veckxx[(veca-veci)x...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  8. If vec a ,vec b,vec c and vec d are the position vectors of the point...

    Text Solution

    |

  9. If OAB is a tetrahedron with edges and hatp, hatq, hatr are unit vect...

    Text Solution

    |

  10. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  11. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  12. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  13. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  14. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  15. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  16. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  17. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  18. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  19. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  20. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |