Home
Class 12
MATHS
Let f (x)=[{:((a (1-x sin x)+ b cos x +5...

Let `f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):}`
If f is continous at `x=0` then correct statement (s) is/are:

A

`a+c=-1`

B

`b+x=-4`

C

`a+b=-5`

D

`c+d=an` irrational number

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the function \( f(x) \) is continuous at \( x = 0 \), we need to analyze the function piecewise, as given in the problem statement. ### Step 1: Define the function for \( x < 0 \) and \( x > 0 \) The function is defined as follows: \[ f(x) = \begin{cases} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} & \text{if } x < 0 \\ \left(1 + \frac{dx + dx^3}{dx^2}\right)^{\frac{1}{x}} & \text{if } x > 0 \end{cases} \] ### Step 2: Find the limit of \( f(x) \) as \( x \) approaches 0 from the left For \( x < 0 \), we need to evaluate: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} \] As \( x \to 0 \), \( \sin x \to 0 \) and \( \cos x \to 1 \). Thus, we have: \[ \lim_{x \to 0^-} f(x) = \frac{a(1 - 0) + b(1) + 5}{0} = \frac{a + b + 5}{0} \] This limit approaches infinity unless \( a + b + 5 = 0 \). Therefore, we set: \[ a + b + 5 = 0 \quad \text{(Equation 1)} \] ### Step 3: Find the limit of \( f(x) \) as \( x \) approaches 0 from the right For \( x > 0 \), we need to evaluate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(1 + \frac{dx + dx^3}{dx^2}\right)^{\frac{1}{x}} \] This simplifies to: \[ \lim_{x \to 0^+} \left(1 + \frac{d(1 + x^2)}{d}\right)^{\frac{1}{x}} = \lim_{x \to 0^+} \left(1 + 1 + x^2\right)^{\frac{1}{x}} = \lim_{x \to 0^+} \left(2 + x^2\right)^{\frac{1}{x}} \] As \( x \to 0 \), this approaches \( 2^{\frac{1}{x}} \), which approaches \( e^{\ln(2)/x} \) and diverges unless \( d = 0 \). Hence, we set: \[ d = 0 \quad \text{(Equation 2)} \] ### Step 4: Apply L'Hôpital's Rule for \( x < 0 \) We need to evaluate the limit for \( x < 0 \) again using L'Hôpital's Rule since it is of the form \( \frac{0}{0} \): \[ \lim_{x \to 0^-} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} \] Differentiating the numerator and denominator: \[ \text{Numerator: } -a \sin x + a x \cos x - b \sin x \quad \text{Denominator: } 2x \] Thus, we evaluate: \[ \lim_{x \to 0^-} \frac{-a \sin x + ax \cos x - b \sin x}{2x} \] Substituting \( x = 0 \): \[ \frac{-0 + 0 - 0}{0} = \text{still } 0 \] We apply L'Hôpital's Rule again: \[ \lim_{x \to 0^-} \frac{-a \cos x + a \cos x - b \cos x}{2} = \frac{-b}{2} \] Setting this equal to the limit from the right (which approaches \( 3 \)) gives us: \[ -\frac{b}{2} = 3 \quad \Rightarrow \quad b = -6 \quad \text{(Equation 3)} \] ### Step 5: Solve the equations Now we have three equations: 1. \( a + b + 5 = 0 \) 2. \( d = 0 \) 3. \( b = -6 \) Substituting \( b = -6 \) into Equation 1: \[ a - 6 + 5 = 0 \quad \Rightarrow \quad a - 1 = 0 \quad \Rightarrow \quad a = 1 \] ### Step 6: Summary of values Now we have: - \( a = 1 \) - \( b = -6 \) - \( c \) (not determined yet) - \( d = 0 \) ### Step 7: Determine \( c \) To find \( c \), we analyze the limit for \( x > 0 \): \[ \lim_{x \to 0^+} \left(1 + \frac{cx + 0}{0}\right)^{\frac{1}{x}} = \text{needs to equal } 3 \] This leads to: \[ c = 0 \quad \text{(Equation 4)} \] ### Final Values Thus, we have: - \( a = 1 \) - \( b = -6 \) - \( c = 0 \) - \( d = 0 \) ### Conclusion The correct statements are: - \( a + c = 1 + 0 = 1 \) - \( b + c = -6 + 0 = -6 \) - \( a + b = 1 - 6 = -5 \) - \( c + d = 0 + 0 = 0 \)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):} If f is continuous at x = 0, then (a + b + c + d) is

Let f (x)= {((1+ax )^(1//x), x lt 0),( ((x+c)^(1//3)-1)/((x+1)^(1//2) -1), x gt 0):}, is continous at x=0, then 3 (e ^(a)+b+c) is equal to:

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

If f (x)= {{:((x-e ^(x)+1-(1-cos 2x))/(x ^(2)), x ne 0),(k,x=0):} is continous at x=0 then which of the following statement is false ?

If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt 0):}

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", " x lt 0 ) :} is continous at x = 0 than lambda = ?

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f (x)= [{:((x(3e^(1//x)+4))/(2 -e^(1//x)),,,( x ne 0)),(0 ,,, x=0)...

    Text Solution

    |

  2. Let |f (x)| le sin ^(2) x, AA x in R, then

    Text Solution

    |

  3. Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((...

    Text Solution

    |

  4. If f (x)=|||x|-2|+p| have more than 3 points non-derivability then the...

    Text Solution

    |

  5. Identify the options having correct statement:

    Text Solution

    |

  6. A twice differentiable function f(x) is denined for all real numbers a...

    Text Solution

    |

  7. If f(x) = |sinx|, then

    Text Solution

    |

  8. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  9. Let f :R to R be a function, such that |f(x)|le x ^(4n), n in N AA n i...

    Text Solution

    |

  10. Let f (x) =[x] and g (x) =0 when x is an integer and g (x) =x ^(2) whe...

    Text Solution

    |

  11. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  12. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  13. Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

    Text Solution

    |

  14. If f (x) be a differentiable function satisfying f (y) f ((x)/(y))=f (...

    Text Solution

    |

  15. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  16. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  17. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  18. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  19. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  20. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |