Home
Class 12
MATHS
Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.......

Let `f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x^(n-1))x^n;(n >= 4)` then :

A

`f (x) =-prod_(r=1)^(n) (1- n ^(r))`

B

`f (x)=1 -prod_(r =1)^(n)(1- x ^(r))`

C

`f (x) =f (x) (prod _(r =1)^(n)(r x ^(r-1))/((1-x ^(r ))))`

D

`f '(x) =f (x) ((prod _(r =1) ^(n) (r x ^(r-4))/((1- x^(r))))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = x + (1-x)x^2 + (1-x)(1-x^2)x^3 + \ldots + (1-x)(1-x^2)\ldots(1-x^{n-1})x^n \] where \( n \geq 4 \). ### Step 1: Rewrite the function in summation form The function can be expressed in a more compact form. We can observe that each term in the series has a pattern. The \( k \)-th term can be represented as: \[ (1-x)(1-x^2)(1-x^3)\ldots(1-x^{k-1}) x^k \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = \sum_{k=1}^{n} (1-x)(1-x^2)\ldots(1-x^{k-1}) x^k \] ### Step 2: Factor out common terms Notice that we can factor out \( (1-x) \) from the first two terms, and then continue factoring out \( (1-x^2) \) and so on. This gives us: \[ f(x) = x + (1-x)x^2 + (1-x)(1-x^2)x^3 + \ldots + (1-x)(1-x^2)\ldots(1-x^{n-1})x^n \] ### Step 3: Simplify the expression We can express the remaining terms in terms of products of \( (1-x) \): \[ 1 - f(x) = (1-x)(x^2 + (1-x)x^3 + \ldots + (1-x)(1-x^2)\ldots(1-x^{n-1})x^n) \] ### Step 4: Recognize the pattern in the series The series can be recognized as a product of terms: \[ 1 - f(x) = (1-x)(1-x^2)(1-x^3)\ldots(1-x^n) \] ### Step 5: Final expression for \( f(x) \) Thus, we can conclude that: \[ f(x) = 1 - \prod_{r=1}^{n} (1-x^r) \] ### Conclusion The final expression for \( f(x) \) is: \[ f(x) = 1 - \prod_{r=1}^{n} (1-x^r) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

if |x| oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=

Let P_n=((1+x)(1-x^2)(1+x^3)(1-x^4))/({(1+x)(1-x^2)(1+x^3)(1-x^4)(1-x^(2n))}^2) .Let the term independent of x in the expansion of (x^2+1/x^2+2)^(2n) is equal to lim_(x->-1) Pn . then

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x)............[1-(n-1)x].

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)++n(1-x)(1-2x)(1-3x)[1-(n-1)x] .

If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x) ......... ....... [cos(2n-1)x+isin(2n-1)x] , then f''(x) is equal to

Let f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_3+x)+ ........+ 1/(2^(n-1))cos(a_n+x) where a)1,a_2 a_n in Rdot If f(x_1)=f(x_2)=0,t h e n|x_2-x_1| may be equal to (a) pi (b) 2pi (c) 3pi (d) pi/2

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+....(n+1) terms =0

Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^+(x+2)^(n-3)(x+1)^2++(x+1)^(n-1) (x+2)^(n-2)-(x+1)^n b. (x+2)^(n-2)-(x+1)^(n-1) c. (x+2)^n-(x+1)^n d. none of these

lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. If f (x) be a differentiable function satisfying f (y) f ((x)/(y))=f (...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  8. If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) ...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. If f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x)={2-|x| x < 2 sgn(x)-b x >= 2...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi (t), y=psi(t), then (d ^(2)y)/(dx ^(2))=

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |