Home
Class 12
MATHS
If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x...

If `f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):}` is differentiable in `[0,2]` then: ([.] denotes greatest integer function)

A

`a= 1/3`

B

`a=1/6`

C

`b =(pi)/(4)- (13)/(6)`

D

`b =(pi)/(4) -(7)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is both continuous and differentiable over the interval \([0, 2]\). The function is defined piecewise: 1. For \( 0 \leq x \leq 1 \): \[ f(x) = \frac{\sin(\lfloor x^2 \rfloor \pi)}{x^2 - 3x + 8} + ax^3 + b \] 2. For \( 1 < x \leq 2 \): \[ f(x) = 2 \cos(\pi x) + \tan^{-1}(x) \] ### Step 1: Ensure Continuity at \( x = 1 \) For \( f(x) \) to be continuous at \( x = 1 \), we need: \[ f(1^-) = f(1^+) \] Calculating \( f(1^-) \): \[ f(1^-) = \frac{\sin(\lfloor 1^2 \rfloor \pi)}{1^2 - 3 \cdot 1 + 8} + a \cdot 1^3 + b = \frac{\sin(0)}{1 - 3 + 8} + a + b = 0 + a + b = a + b \] Calculating \( f(1^+) \): \[ f(1^+) = 2 \cos(\pi \cdot 1) + \tan^{-1}(1) = 2 \cdot (-1) + \frac{\pi}{4} = -2 + \frac{\pi}{4} \] Setting these equal for continuity: \[ a + b = -2 + \frac{\pi}{4} \quad \text{(1)} \] ### Step 2: Ensure Differentiability at \( x = 1 \) Next, we need to ensure that \( f'(1^-) = f'(1^+) \). Calculating \( f'(1^-) \): Using the derivative of the first part: \[ f'(x) = \frac{d}{dx}\left(\frac{\sin(\lfloor x^2 \rfloor \pi)}{x^2 - 3x + 8}\right) + 3ax^2 \] For \( 0 \leq x < 1 \), \( \lfloor x^2 \rfloor = 0 \), so: \[ f'(1^-) = 3a \cdot 1^2 = 3a \] Calculating \( f'(1^+) \): Using the derivative of the second part: \[ f'(x) = -2\pi \sin(\pi x) + \frac{1}{1 + x^2} \] At \( x = 1 \): \[ f'(1^+) = -2\pi \sin(\pi) + \frac{1}{1 + 1^2} = 0 + \frac{1}{2} = \frac{1}{2} \] Setting these equal for differentiability: \[ 3a = \frac{1}{2} \quad \text{(2)} \] ### Step 3: Solve the Equations From equation (2): \[ a = \frac{1}{6} \] Substituting \( a \) back into equation (1): \[ \frac{1}{6} + b = -2 + \frac{\pi}{4} \] \[ b = -2 + \frac{\pi}{4} - \frac{1}{6} \] To combine the constants: Convert \(-2\) to a fraction with a common denominator of 12: \[ -2 = -\frac{24}{12} \] Convert \(\frac{\pi}{4}\) to a fraction with a common denominator of 12: \[ \frac{\pi}{4} = \frac{3\pi}{12} \] Now substituting: \[ b = -\frac{24}{12} + \frac{3\pi}{12} - \frac{2}{12} = \frac{3\pi - 26}{12} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = \frac{1}{6}, \quad b = \frac{3\pi - 26}{12} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={ax^3+b, for 0 le x le 1 and 2cospix+tan^-1x, for 1 < x le 2 be the differentiable function in [0,2], then find a and b, (where [.] denotes the greatest integer function).

The number of point f(x) ={{:([ cos pix],0le x lt1),( |2x-3|[x-2],1lt xle2):} is discontinuous at Is ([.] denotes the greatest intgreal function )

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where [.] denotes greatest integer function then. lim _(x to ((3pi)/(2))^+), f (x) equals

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. Number of points where f (x) is non-derivable :

A point where function f(x) = [sin [x]] is not continuous in (0,2pi) [.] denotes the greatest integer le x, is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. If f (x) be a differentiable function satisfying f (y) f ((x)/(y))=f (...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  8. If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) ...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. If f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x)={2-|x| x < 2 sgn(x)-b x >= 2...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi (t), y=psi(t), then (d ^(2)y)/(dx ^(2))=

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |