Home
Class 12
MATHS
If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, ...

If `f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):},` then `f (f(x))` is not differentiable at:

A

`x=1`

B

`x=2`

C

`x=5/2`

D

`x=3`

Text Solution

AI Generated Solution

The correct Answer is:
To find where the function \( f(f(x)) \) is not differentiable, we will analyze the function \( f(x) \) and then compute \( f(f(x)) \) step by step. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 1 + x & \text{if } 0 \leq x \leq 2 \\ 3x - 2 & \text{if } 2 < x \leq 3 \end{cases} \] ### Step 2: Determine the range of \( f(x) \) - For \( 0 \leq x \leq 2 \): \[ f(x) = 1 + x \quad \text{(ranges from 1 to 3)} \] - For \( 2 < x \leq 3 \): \[ f(x) = 3x - 2 \quad \text{(ranges from 4 to 7)} \] Thus, the overall range of \( f(x) \) is \( [1, 3] \) for \( 0 \leq x \leq 2 \) and \( (4, 7] \) for \( 2 < x \leq 3 \). ### Step 3: Compute \( f(f(x)) \) #### Case 1: \( 0 \leq x \leq 2 \) In this case, \( f(x) = 1 + x \) which lies in the interval \( [1, 3] \). Therefore, we can apply \( f \) again: \[ f(f(x)) = f(1 + x) = \begin{cases} 1 + (1 + x) = 2 + x & \text{if } 1 + x \leq 2 \\ 3(1 + x) - 2 = 3 + 3x - 2 = 3x + 1 & \text{if } 1 + x > 2 \end{cases} \] This means: - If \( 0 \leq x \leq 1 \): \( f(f(x)) = 2 + x \) - If \( 1 < x \leq 2 \): \( f(f(x)) = 3x + 1 \) #### Case 2: \( 2 < x \leq 3 \) In this case, \( f(x) = 3x - 2 \). We need to check where this value lies: - For \( x = 2 \): \( f(2) = 4 \) - For \( x = 3 \): \( f(3) = 7 \) Thus, \( f(x) \) for \( 2 < x \leq 3 \) will always be greater than 4. Therefore, we only consider: \[ f(f(x)) = f(3x - 2) = 3(3x - 2) - 2 = 9x - 6 - 2 = 9x - 8 \] ### Step 4: Combine results Now we have: \[ f(f(x)) = \begin{cases} 2 + x & \text{if } 0 \leq x \leq 1 \\ 3x + 1 & \text{if } 1 < x \leq 2 \\ 9x - 8 & \text{if } 2 < x \leq 3 \end{cases} \] ### Step 5: Check for differentiability To check where \( f(f(x)) \) is not differentiable, we need to check the points where the piecewise function changes: - At \( x = 1 \): - \( f(f(1)) = 2 + 1 = 3 \) - \( f(f(1^+)) = 3(1) + 1 = 4 \) The left-hand derivative is \( 1 \) and the right-hand derivative is \( 3 \). Since they are not equal, \( f(f(x)) \) is not differentiable at \( x = 1 \). - At \( x = 2 \): - \( f(f(2)) = 3(2) + 1 = 7 \) - \( f(f(2^+)) = 9(2) - 8 = 10 \) The left-hand derivative is \( 3 \) and the right-hand derivative is \( 9 \). Since they are not equal, \( f(f(x)) \) is not differentiable at \( x = 2 \). ### Conclusion Thus, \( f(f(x)) \) is not differentiable at \( x = 1 \) and \( x = 2 \). ### Final Answer The function \( f(f(x)) \) is not differentiable at \( x = 1 \) and \( x = 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is non-differentiable is :

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is dicontnous is:

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. If f (x) be a differentiable function satisfying f (y) f ((x)/(y))=f (...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  8. If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) ...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. If f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x)={2-|x| x < 2 sgn(x)-b x >= 2...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi (t), y=psi(t), then (d ^(2)y)/(dx ^(2))=

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |