Home
Class 12
MATHS
If f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x...

If `f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x)={2-|x| x < 2 sgn(x)-b x >= 2. if h(x)=f(x)+g(x)` is discontinuous at exactly one point, then -

A

`a=-3, b=0`

B

`a=-3,b=-1`

C

`a=2,b=1`

D

`a=0,b=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) given in the question, and then find the conditions under which the function \( h(x) = f(x) + g(x) \) is discontinuous at exactly one point. ### Step 1: Define the functions \( f(x) \) and \( g(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} |x| - 3 & \text{if } x < 1 \\ |x - 2| + a & \text{if } x \geq 1 \end{cases} \] The function \( g(x) \) is defined as: \[ g(x) = \begin{cases} 2 - |x| & \text{if } x < 2 \\ \text{sgn}(x) - b & \text{if } x \geq 2 \end{cases} \] ### Step 2: Analyze \( f(x) \) 1. For \( x < 1 \): \[ f(x) = -x - 3 \] 2. For \( x \geq 1 \): - If \( x < 2 \): \[ f(x) = |x - 2| + a = -x + 2 + a \] - If \( x \geq 2 \): \[ f(x) = x - 2 + a \] ### Step 3: Analyze \( g(x) \) 1. For \( x < 2 \): \[ g(x) = 2 - |x| \] - If \( x < 0 \): \[ g(x) = 2 + x \] - If \( 0 \leq x < 2 \): \[ g(x) = 2 - x \] 2. For \( x \geq 2 \): \[ g(x) = \text{sgn}(x) - b = 1 - b \] ### Step 4: Define \( h(x) \) Now, we can define \( h(x) = f(x) + g(x) \): 1. For \( x < 0 \): \[ h(x) = (-x - 3) + (2 + x) = -1 \] 2. For \( 0 \leq x < 1 \): \[ h(x) = (-x - 3) + (2 - x) = -1 \] 3. For \( 1 \leq x < 2 \): \[ h(x) = (-x + 2 + a) + (2 - x) = -2x + 4 + a \] 4. For \( x \geq 2 \): \[ h(x) = (x - 2 + a) + (1 - b) = x - 1 + a - b \] ### Step 5: Check continuity at points \( x = 1 \) and \( x = 2 \) **At \( x = 1 \)**: - Left-hand limit: \[ h(1^-) = -1 \] - Right-hand limit: \[ h(1^+) = -2(1) + 4 + a = 2 + a \] For continuity at \( x = 1 \): \[ -1 = 2 + a \implies a = -3 \] **At \( x = 2 \)**: - Left-hand limit: \[ h(2^-) = -2(2) + 4 + a = -4 + 4 - 3 = -3 \] - Right-hand limit: \[ h(2^+) = 2 - 1 + a - b = 1 + a - b \] For continuity at \( x = 2 \): \[ -3 = 1 + a - b \implies a - b = -4 \] ### Step 6: Conditions for discontinuity 1. If \( h(x) \) is discontinuous at \( x = 2 \), then: \[ a = -3 \quad \text{and} \quad b \neq 1 \] 2. If \( h(x) \) is discontinuous at \( x = 1 \), then: \[ a \neq -3 \quad \text{and} \quad b = 1 \] ### Conclusion The values of \( a \) and \( b \) that satisfy the conditions for \( h(x) \) to be discontinuous at exactly one point are: - \( a = -3 \) and \( b \neq 1 \) (discontinuous at \( x = 2 \)) - \( a \neq -3 \) and \( b = 1 \) (discontinuous at \( x = 1 \))
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(|x|-3 when x = 1) & g(x)={2-|x| when x = 2 . if h(x)=f(x)+g(x) is discontinuous at exactly one point, then - (a). a=-3, b=0 (b). a=-3, b=-1 (c) a=2, b=1 (d) a=0, b=1

Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt 1),(,Sgn(x)-b,x ge 1):} If h(x)=f(x) is discontinuous at exactly one point, then which of the following are correct?

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

Let f(x)=-x^(2)+x+p , where p is a real number. If g(x)=[f(x)] and g(x) is discontinuous at x=(1)/(2) , then p - cannot be (where [.] represents the greatest integer function)

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

The function f(x) : (x-1)/(x( x^(2) -1)) is discontinuous at (a) exactly one point (b) exactly two points (c) exactly three points (d) no point

Let f(x)={x^2-4x+3,x<3 and x-4,xgeq3 }a n d g(x)={1,x<1 and x^2-x,1lt=x<4 and x-3,xgeq4 then function f(x)dotg(x) is discontinuous at (a)exactly 1 point (b) exactly 2 points (c)exactly 3 points (d) None of these

Statement 1: f(x)=cos x is continous at x=0a n dg(x)=[tanx],"w h e r e"[dot] represents greatest integer function, is discontinuous at x=0,t h e nh(x)=f(x)dotg(x) is discontinuous at x=0. Statement 2: If f(x) is continous and g(x) is discontinuous at x=a ,t h e nh(x)=f(x)g(x) is discontinuous at x=a

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. If f (x) be a differentiable function satisfying f (y) f ((x)/(y))=f (...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  8. If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) ...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. If f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x)={2-|x| x < 2 sgn(x)-b x >= 2...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi (t), y=psi(t), then (d ^(2)y)/(dx ^(2))=

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |