Home
Class 12
MATHS
Consider a function f (x) in [0,2pi] def...

Consider a function `f (x)` in `[0,2pi]` defined as :
` f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):}`
where {.} denotes greatest integer function then.
Number of points where `f (x)` is non-derivable :

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined in the intervals \( [0, \pi] \) and \( [\pi, 2\pi] \) using the greatest integer function (also known as the floor function). The function is defined as follows: \[ f(x) = \begin{cases} \lfloor \sin x + \cos x \rfloor & \text{for } 0 \leq x \leq \pi \\ \lfloor \sin x - \cos x \rfloor & \text{for } \pi < x \leq 2\pi \end{cases} \] ### Step 1: Analyze \( f(x) \) on the interval \( [0, \pi] \) In this interval, we need to evaluate \( \sin x + \cos x \): 1. **Find the maximum and minimum values of \( \sin x + \cos x \)**: - The maximum occurs at \( x = \frac{\pi}{4} \), where \( \sin x + \cos x = \sqrt{2} \). - The minimum occurs at \( x = \frac{5\pi}{4} \), but this is outside the interval \( [0, \pi] \). The minimum value in this interval is \( 0 \) (at \( x = 0 \) and \( x = \pi \)). 2. **Determine the range of \( \sin x + \cos x \)**: - The function varies from \( 0 \) to \( \sqrt{2} \) in the interval \( [0, \pi] \). 3. **Apply the greatest integer function**: - \( \lfloor \sin x + \cos x \rfloor \) will take values \( 0 \) or \( 1 \) in this interval. ### Step 2: Analyze \( f(x) \) on the interval \( [\pi, 2\pi] \) Now, we evaluate \( \sin x - \cos x \): 1. **Find the maximum and minimum values of \( \sin x - \cos x \)**: - The maximum occurs at \( x = \frac{3\pi}{4} \), where \( \sin x - \cos x = \sqrt{2} \). - The minimum occurs at \( x = \frac{7\pi}{4} \), where \( \sin x - \cos x = -\sqrt{2} \). 2. **Determine the range of \( \sin x - \cos x \)**: - The function varies from \( -\sqrt{2} \) to \( \sqrt{2} \) in the interval \( [\pi, 2\pi] \). 3. **Apply the greatest integer function**: - \( \lfloor \sin x - \cos x \rfloor \) will take values \( -2, -1, 0 \) in this interval. ### Step 3: Identify points of non-differentiability The function \( f(x) \) will be non-differentiable at points where it is discontinuous. We need to check the points where the greatest integer function changes its value: 1. **At \( x = 0 \)**: - \( f(0) = \lfloor \sin(0) + \cos(0) \rfloor = \lfloor 1 \rfloor = 1 \). 2. **At \( x = \frac{\pi}{2} \)**: - \( f(\frac{\pi}{2}) = \lfloor \sin(\frac{\pi}{2}) + \cos(\frac{\pi}{2}) \rfloor = \lfloor 1 + 0 \rfloor = 1 \). - The left-hand limit approaches \( 1 \) and the right-hand limit approaches \( -1 \) (from the next interval), indicating a discontinuity. 3. **At \( x = \pi \)**: - \( f(\pi) = \lfloor \sin(\pi) + \cos(\pi) \rfloor = \lfloor 0 - 1 \rfloor = -1 \). - The left-hand limit approaches \( 1 \) and the right-hand limit approaches \( -1 \), indicating a discontinuity. 4. **At \( x = \frac{3\pi}{2} \)**: - \( f(\frac{3\pi}{2}) = \lfloor \sin(\frac{3\pi}{2}) - \cos(\frac{3\pi}{2}) \rfloor = \lfloor -1 - 0 \rfloor = -1 \). - The left-hand limit approaches \( 0 \) and the right-hand limit approaches \( 0 \), indicating a discontinuity. ### Conclusion The points of non-differentiability are \( x = \frac{\pi}{2}, \pi, \frac{3\pi}{2} \). Therefore, the number of points where \( f(x) \) is non-derivable is: \[ \text{Number of points where } f(x) \text{ is non-derivable} = 3 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where [.] denotes greatest integer function then. lim _(x to ((3pi)/(2))^+), f (x) equals

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Draw the graph of [y] = cos x, x in [0, 2pi], where [*] denotes the greatest integer function.

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),...

    Text Solution

    |

  2. Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),...

    Text Solution

    |

  3. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  4. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  5. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  6. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  7. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  8. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  9. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  10. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  11. f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x, where k in R...

    Text Solution

    |

  12. Let f (x) (cos ^(2) x)/(1+ cos +cos ^(2)x )and g (x) lamda tan x+1(1-l...

    Text Solution

    |

  13. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  14. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  15. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  16. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  17. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  18. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  19. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  20. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |