Home
Class 12
MATHS
f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=k...

`f(x)=(cos^2x)/(1+cosx+cos^2x)` and `g(x)=ktanx+(1-k)sinx-x`, where `k in R, g'(x)=`

A

`((1-cos x ) (f (x)-k))/(cos x)`

B

`((1- cos x )(k-f (x)))/(cos x)`

C

`((1- cos x )(k -f (x)))/(f(x))`

D

`((1- cos x )(k -f (x)))/((f(x ))^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( g'(x) \) of the function \( g(x) = k \tan x + (1-k) \sin x - x \). ### Step-by-Step Solution: 1. **Identify the Function**: \[ g(x) = k \tan x + (1-k) \sin x - x \] 2. **Differentiate \( g(x) \)**: We will differentiate \( g(x) \) with respect to \( x \). - The derivative of \( \tan x \) is \( \sec^2 x \). - The derivative of \( \sin x \) is \( \cos x \). - The derivative of \( x \) is \( 1 \). Therefore, we have: \[ g'(x) = k \sec^2 x + (1-k) \cos x - 1 \] 3. **Combine Terms**: We can rewrite \( g'(x) \): \[ g'(x) = k \sec^2 x + (1-k) \cos x - 1 \] 4. **Find a Common Denominator**: To combine the terms, we can express \( \sec^2 x \) in terms of \( \cos x \): \[ \sec^2 x = \frac{1}{\cos^2 x} \] Thus, \[ g'(x) = \frac{k}{\cos^2 x} + (1-k) \cos x - 1 \] 5. **Combine into a Single Fraction**: Multiply the second term by \( \cos^2 x \) to have a common denominator: \[ g'(x) = \frac{k + (1-k) \cos^3 x - \cos^2 x}{\cos^2 x} \] 6. **Factor the Numerator**: The numerator can be factored using the identity for the difference of cubes: \[ 1 - \cos^3 x = (1 - \cos x)(1 + \cos x + \cos^2 x) \] Thus, we can write: \[ g'(x) = \frac{k(1 - \cos^3 x) + (1-k)(1 - \cos^2 x)}{\cos^2 x} \] 7. **Final Expression**: After simplifying, we arrive at: \[ g'(x) = \frac{(k - (1-k)) (1 - \cos x)(1 + \cos x + \cos^2 x)}{\cos^2 x} \] ### Final Result: Thus, the derivative \( g'(x) \) is: \[ g'(x) = \frac{(k - 1)(1 - \cos x)(1 + \cos x + \cos^2 x)}{\cos^2 x} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(1-lamda) sin x-x, where lamda in R and x in [0, pi//2). The values of 'lamda' such that g '(x) ge 0 for any x in [0, pi//2):

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)= , where x in (0, (pi)/(2))

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx) where 0 < x < 1, then (A) both 'f' and 'g' are increasing functions

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  2. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  3. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  4. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  5. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  6. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  7. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  8. f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x, where k in R...

    Text Solution

    |

  9. Let f (x) (cos ^(2) x)/(1+ cos +cos ^(2)x )and g (x) lamda tan x+1(1-l...

    Text Solution

    |

  10. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  11. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  12. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  13. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  14. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  15. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  16. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  17. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |

  18. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |

  19. Let f (n) x+ f (n) (y ) = (x ^(n)+y ^(n))/(x ^(n) y ^(n))AA x, y in R-...

    Text Solution

    |

  20. Let f (n) x+ f (n) (y ) = (x ^(n)+y ^(n))/(x ^(n) y ^(n))AA x, y in R-...

    Text Solution

    |