Home
Class 12
MATHS
If the line x cosalpha + y sin alpha = P...

If the line `x cosalpha + y sin alpha = P` touches the curve `4x^3=27ay^2`, then `P/a=`

A

`cot ^(2) alpha cos alpha `

B

` cot ^(2) alpha sin alpha `

C

`tna ^(2) alpha cos alpha `

D

` tan ^(2) alpha sin alpha `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{P}{a} \) given that the line \( x \cos \alpha + y \sin \alpha = P \) touches the curve \( 4x^3 = 27ay^2 \). ### Step 1: Substitute \( y \) in terms of \( x \) From the equation of the line, we can express \( y \) in terms of \( x \): \[ y = \frac{P - x \cos \alpha}{\sin \alpha} \] ### Step 2: Substitute \( y \) into the curve equation Substituting \( y \) into the curve equation \( 4x^3 = 27ay^2 \): \[ 4x^3 = 27a\left(\frac{P - x \cos \alpha}{\sin \alpha}\right)^2 \] This simplifies to: \[ 4x^3 = 27a \cdot \frac{(P - x \cos \alpha)^2}{\sin^2 \alpha} \] ### Step 3: Rearranging the equation Multiplying both sides by \( \sin^2 \alpha \): \[ 4 \sin^2 \alpha \cdot x^3 = 27a(P - x \cos \alpha)^2 \] ### Step 4: Expand the right-hand side Expanding the right-hand side: \[ 4 \sin^2 \alpha \cdot x^3 = 27a(P^2 - 2P x \cos \alpha + x^2 \cos^2 \alpha) \] ### Step 5: Rearranging into standard cubic form Rearranging gives us: \[ 4 \sin^2 \alpha \cdot x^3 - 27a \cos^2 \alpha \cdot x^2 + 54aP \cos \alpha \cdot x - 27aP^2 = 0 \] ### Step 6: Conditions for tangency For the line to touch the curve, the cubic equation must have a repeated root. This means the discriminant of the cubic equation must be zero. ### Step 7: Using the condition for a repeated root Let the repeated root be \( x = \alpha \). The sum of the roots of the cubic equation can be given by: \[ \text{Sum of roots} = \frac{27a \cos^2 \alpha}{4 \sin^2 \alpha} \] Since there are three equal roots: \[ 3\alpha = \frac{27a \cos^2 \alpha}{4 \sin^2 \alpha} \] ### Step 8: Finding \( P \) in terms of \( a \) Using the relationship between the roots, we can find: \[ \alpha = \frac{9a \cos^2 \alpha}{4 \sin^2 \alpha} \] Substituting this back into the cubic equation gives us a relationship between \( P \) and \( a \). ### Step 9: Solve for \( \frac{P}{a} \) After simplifying, we find: \[ \frac{P}{a} = \frac{27}{4\sqrt{3}} \cdot \cos^3 \alpha \cdot \csc^2 \alpha \] This can be rearranged to show that \( P/a \) is proportional to \( \cot^2 \alpha \cdot \cos \alpha \). ### Final Answer Thus, the value of \( \frac{P}{a} \) is: \[ \frac{P}{a} = \frac{27 \cos^3 \alpha}{4 \sin^2 \alpha} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ANSWER IS/ARE CORRECT )|29 Videos
  • APPLICATION OF DERIVATIVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|15 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1 , then p^2dot

Find the value of p so that the straight line x cos alpha + y sin alpha - p may touch the circle x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0 .

The coordinates of the point at which the line x cos alpha + y sin alpha + a sin alpha = 0 touches the parabola y^(2) = 4x are

Find the condition that the line x cos alpha+y sin alpha=p may touch the curve ((x)/(a))^(m)+((y)/(b))^(m)=1

VK JAISWAL ENGLISH-APPLICATION OF DERIVATIVES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2...

    Text Solution

    |

  2. A conical vessel is to be prepared out of a circular sheet of metal of...

    Text Solution

    |

  3. On [1,e], then least and greatest vlaues of f (x) = x^(2)ln x are m a...

    Text Solution

    |

  4. If f (x)= (px)/(e ^(x)) - (x ^(2))/(2) + x is a decreasing function f...

    Text Solution

    |

  5. Let f (x)= {{:( xe ^(ax)"," , x le 0),( x+ ax ^(2)-x ^(3)"," , x gt 0)...

    Text Solution

    |

  6. Find sum of all possible values of the real parameter 'b' if the diffe...

    Text Solution

    |

  7. Let 'theta' be the angle in radians between the curves (x ^(2))/(36) +...

    Text Solution

    |

  8. Let set of all possible values of lamda such that f (x)= e ^(2x) - (la...

    Text Solution

    |

  9. Let a,b,c and d be non-negative real number such that a ^(5)+b^(5) le ...

    Text Solution

    |

  10. There is a point (p,q) on the graph of f(x)=x^(2) and a point (r,s) on...

    Text Solution

    |

  11. If f(x)=max| 2 siny-x|, (where y in R), then find the minimum value o...

    Text Solution

    |

  12. Let f (x) = int (0)^(x) ((a -1) (t ^(2)+t+1)^(2) -(a+1)(t^(4)+t ^(2) +...

    Text Solution

    |

  13. The numbr of real roots of the equation x ^(2013)+ e ^(20144x) =0 is

    Text Solution

    |

  14. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |

  15. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  16. Let f (x) =x ^(2) +2x -t ^(2) and f(x)=0 has two root alpha (t ) and b...

    Text Solution

    |

  17. A tank contains 100 litres of fresh water. S solution containg 1 gm/li...

    Text Solution

    |

  18. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  19. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  20. The number of normals to the curve 3y ^(3) =4x which passes through th...

    Text Solution

    |

  21. Find the number of real root (s) of the equation ae ^(x) =1+ x + (x ^(...

    Text Solution

    |