Home
Class 12
MATHS
Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, ...

Let f(x) = `{{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):}` then f(x) has

A

locla maximum at `x = pi/2`

B

local minimum at `x =pi/2`

C

absolute maximum at `x =0`

D

absolute maximum at `x=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the piecewise function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} x^3 + x^2 - 10x & \text{for } -1 \leq x < 0 \\ \sin x & \text{for } 0 \leq x < \frac{\pi}{2} \\ 1 + \cos x & \text{for } \frac{\pi}{2} \leq x \leq x \end{cases} \] We will analyze each piece of the function to determine the nature of \( f(x) \) in terms of local maxima, local minima, and absolute maxima. ### Step 1: Analyze \( f(x) \) for \( -1 \leq x < 0 \) 1. **Function**: \( f(x) = x^3 + x^2 - 10x \) 2. **Find the derivative**: \[ f'(x) = 3x^2 + 2x - 10 \] 3. **Find critical points by setting the derivative to zero**: \[ 3x^2 + 2x - 10 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 3 \cdot (-10)}}{2 \cdot 3} = \frac{-2 \pm \sqrt{4 + 120}}{6} = \frac{-2 \pm \sqrt{124}}{6} = \frac{-2 \pm 2\sqrt{31}}{6} = \frac{-1 \pm \sqrt{31}}{3} \] This gives us two critical points: \[ x_1 = \frac{-1 - \sqrt{31}}{3}, \quad x_2 = \frac{-1 + \sqrt{31}}{3} \] 4. **Evaluate the sign of \( f'(x) \)**: - For \( x < x_1 \), \( f'(x) > 0 \) (increasing). - Between \( x_1 \) and \( x_2 \), \( f'(x) < 0 \) (decreasing). - For \( x > x_2 \), \( f'(x) > 0 \) (increasing). 5. **Behavior in the interval**: - Since \( x_1 < -1 \) and \( x_2 > 0 \), \( f(x) \) is decreasing on \( [-1, 0) \). - Thus, the absolute maximum occurs at \( x = -1 \). ### Step 2: Analyze \( f(x) \) for \( 0 \leq x < \frac{\pi}{2} \) 1. **Function**: \( f(x) = \sin x \) 2. **Find the derivative**: \[ f'(x) = \cos x \] 3. **Critical points**: - \( f'(x) = 0 \) when \( \cos x = 0 \) which occurs at \( x = \frac{\pi}{2} \). 4. **Behavior**: - \( f'(x) > 0 \) for \( 0 < x < \frac{\pi}{2} \) (increasing). - Thus, the maximum at \( x = \frac{\pi}{2} \) is \( f\left(\frac{\pi}{2}\right) = 1 \). ### Step 3: Analyze \( f(x) \) for \( \frac{\pi}{2} \leq x \) 1. **Function**: \( f(x) = 1 + \cos x \) 2. **Find the derivative**: \[ f'(x) = -\sin x \] 3. **Behavior**: - \( f'(x) < 0 \) for \( x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \) (decreasing). - Thus, \( f(x) \) is decreasing after \( x = \frac{\pi}{2} \). ### Conclusion - **Local maxima**: At \( x = \frac{\pi}{2} \) (since \( f'(x) \) changes from positive to negative). - **Absolute maxima**: At \( x = -1 \) (the highest value of \( f(x) \) in the interval). - **Local minima**: There are no local minima in the given intervals. ### Final Answer - \( f(x) \) has a local maximum at \( x = \frac{\pi}{2} \) and an absolute maximum at \( x = -1 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|15 Videos
  • APPLICATION OF DERIVATIVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|5 Videos
  • APPLICATION OF DERIVATIVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):} . Draw the graph of the function and find the following (a) Range of the function (b) Point of inflection (c) Point of local minima

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

VK JAISWAL ENGLISH-APPLICATION OF DERIVATIVES -EXERCISE (ONE OR MORE THAN ANSWER IS/ARE CORRECT )
  1. The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

    Text Solution

    |

  2. Let m and n be positive integers and x,y gt 0 and x+y =k, where k is c...

    Text Solution

    |

  3. The staright line which is both tangent and normal to the curve x = 3t...

    Text Solution

    |

  4. A curve is such that the ratio of the subnormal at any point to the su...

    Text Solution

    |

  5. A probola of the form y = ax ^(2) +bx +x (a gt 0) intersects the graph...

    Text Solution

    |

  6. Gradient of the line passing through the point (2,8) and touching the ...

    Text Solution

    |

  7. The equation x + cos x=a has exactly one positive root, then:

    Text Solution

    |

  8. Given that f (x) is a non-constant linear function. Then the curves :

    Text Solution

    |

  9. d (x) = int (0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) at (x gt 0)...

    Text Solution

    |

  10. Let f(x)=sinx+a x+bdot Then which of the following is/are true? (a) f(...

    Text Solution

    |

  11. Which of the following graphs represent function whose derivatives hav...

    Text Solution

    |

  12. Consider f (x)= sin ^(5) x-1, x in [0, (pi)/(2)], which of the followi...

    Text Solution

    |

  13. Let f (x)= [{:(x ^(2alpha+1)ln x ,,, x gt0),(0 ,,, x =0):} If f (x) sa...

    Text Solution

    |

  14. Which of the following is/are true for the function f(x)= int (0) ^(x)...

    Text Solution

    |

  15. Let F (x) = (f (x ))^(2) + (f' (x ))^(2), F (0) =6, whtere f (x) is a ...

    Text Solution

    |

  16. Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le...

    Text Solution

    |

  17. Minimum distnace between the curves y ^(2) =x-1and x ^(2) =x-1 and x ^...

    Text Solution

    |

  18. For the equation (e ^(-x))/(1+x)= lamda which of the following stateme...

    Text Solution

    |

  19. If y = m x +5 is a tangent to the curve x ^(3) y ^(3) = ax ^(3) +by^(...

    Text Solution

    |

  20. If (f(x)-1) (x ^(2) + x+1)^(2) -(f (x)+1) (x^(4) +x ^(2) +1) =0 AA x...

    Text Solution

    |