Home
Class 12
MATHS
Minimum vlaue of |x-p| + |x-15| +|x-p-15...

Minimum vlaue of `|x-p| + |x-15| +|x-p-15|.` If `p le x le 15 and 0 lt p lt 15` :

A

30

B

15

C

10

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( |x - p| + |x - 15| + |x - p - 15| \) under the conditions \( p \leq x \leq 15 \) and \( 0 < p < 15 \), we will analyze the expression step by step. ### Step 1: Understand the Expression The expression we need to minimize is: \[ E(x) = |x - p| + |x - 15| + |x - (p + 15)| \] Given the constraints \( p \leq x \leq 15 \), we will analyze the behavior of the expression within this interval. ### Step 2: Analyze Each Absolute Value 1. **For \( |x - p| \)**: Since \( x \geq p \), this simplifies to \( x - p \). 2. **For \( |x - 15| \)**: Since \( x \leq 15 \), this simplifies to \( 15 - x \). 3. **For \( |x - (p + 15)| \)**: Since \( p + 15 > 15 \) (because \( p < 15 \)), we have \( |x - (p + 15)| = (p + 15) - x \). ### Step 3: Substitute Simplified Absolute Values Substituting these simplifications into the expression gives: \[ E(x) = (x - p) + (15 - x) + ((p + 15) - x) \] ### Step 4: Simplify the Expression Now, we simplify \( E(x) \): \[ E(x) = x - p + 15 - x + p + 15 - x \] Combining like terms: \[ E(x) = 30 - x \] ### Step 5: Find the Minimum Value To find the minimum value of \( E(x) = 30 - x \) under the constraint \( p \leq x \leq 15 \), we need to maximize \( x \) since \( E(x) \) decreases as \( x \) increases. The maximum value of \( x \) in the interval is 15. Thus, we substitute \( x = 15 \): \[ E(15) = 30 - 15 = 15 \] ### Conclusion The minimum value of \( |x - p| + |x - 15| + |x - (p + 15)| \) for \( p \leq x \leq 15 \) and \( 0 < p < 15 \) is: \[ \boxed{15} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

3y - 5x lt 15

The minimum value of the expression |x-p|+|x-15|+|x-p-15| for ' x ' in the range plt=xlt=15 where x

The minimum value of the expression |x-p+|x-15|+|x-p-15| for ' x ' in the range plt=xlt=15 where x

Solve 0 lt | x-3| le 5

If x is a real number and |5-(x-3)|+8lt15 , then (i) 1 le x le 15 (ii) 1lt x lt 15 (iii) 1 lt x le 15 (iv) 1 le x le 15

Let 0 lt A_(i) lt pi for i = 1,2,"……"n . Use mathematical induction to prove that sin A_(1) + sin A_(2)+ "….." + sin A_(n) le n sin ((A_(1) + A_(2) + "……" + A_(n))/(n)) where n ge 1 is a natural number. [You may use the fact that p sin x + (1-p) sin y le sin [px+(1-p)y] , where 0 le p le 1 and 0 le x , y le pi ]

If 0 lt x lt 2 pi and |cos x| le sin x , then

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let R be set of points inside a rectangle of sides a and b (a, b > 1) with two sides along the positive direction of x-axis and y-axis(a) R = {(x, y) : 0 le x le a, 0 le y le b} (b) R = {(x,y) : 0 le x lt a, 0 le y le b} (c) R = {(x,y): 0 le x le a, 0 lt y lt b} (d) R = {(x,y): 0 lt x lt a, 0 lt y lt b}

Given P = {x:9 lt 2x - 1 le 13, x in R} and Q = { x : - 5 le 3+ 4x lt 15, x in I} Where R={Real Numbers} and I={Integers}.Represent P and Q on number lines. Write down the elements of P nnQ

VK JAISWAL ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Minimum vlaue of |x-p| + |x-15| +|x-p-15|. If p le x le 15 and 0 lt p ...

    Text Solution

    |

  2. Let f(x) = ax^2 + bx + c where a,b,c are integers. If sin\ pi/7 * sin\...

    Text Solution

    |

  3. Let a,b,c,d be distinct integers such that the equation (x-a) (x-b) (x...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of m, m le 16 for which the equ...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least rositive integral value of 'x' satisfying (e ^(x) -2) (sin (...

    Text Solution

    |

  8. The integral values of x for which x^2 +17x+71 is perfect square of a ...

    Text Solution

    |

  9. Let P (x)=x ^(6) -x ^(5) -x ^(3) -x ^(2) -x and alpha, beta, gamma, de...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre pi is a whole number ) for which ...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression ax ^(4)+bx^(3)-x ^(2)+2x+3 has the remainder 4x +3 w...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The sum of all real values of k for which the expression x ^(2)+2xy +k...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |