Home
Class 12
MATHS
If alpha, beta ar the roots of the quadr...

If `alpha, beta` ar the roots of the quadratic equation `x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, ` then the value of `alpha ^(2) + alpha beta ` is equal to :

A

3

B

5

C

7

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equation and find the value of \( \alpha^2 + \alpha\beta \), we will follow these steps: ### Step 1: Identify the quadratic equation The given quadratic equation is: \[ x^2 - (3 + 2^{\sqrt{\log_2 3}} - 3^{\sqrt{\log_3 2}})x - 2(3^{\log_3 2} - 2^{\log_2 3}) = 0 \] ### Step 2: Simplify the coefficients We need to simplify the coefficients of the quadratic equation. 1. **Simplifying the coefficient of \( x \)**: - The coefficient of \( x \) is \( 3 + 2^{\sqrt{\log_2 3}} - 3^{\sqrt{\log_3 2}} \). - Using the change of base formula, we can express \( \sqrt{\log_3 2} \) as \( \frac{\sqrt{\log_2 2}}{\sqrt{\log_2 3}} \). - Thus, we can rewrite \( 3^{\sqrt{\log_3 2}} \) as \( 3^{\frac{\sqrt{\log_2 2}}{\sqrt{\log_2 3}}} = 2^{\sqrt{\log_2 3}} \). - Therefore, the coefficient simplifies to \( 3 + 2^{\sqrt{\log_2 3}} - 2^{\sqrt{\log_2 3}} = 3 \). 2. **Simplifying the constant term**: - The constant term is \( -2(3^{\log_3 2} - 2^{\log_2 3}) \). - Using the property \( a^{\log_a b} = b \), we have \( 3^{\log_3 2} = 2 \) and \( 2^{\log_2 3} = 3 \). - Therefore, the constant term simplifies to \( -2(2 - 3) = -2(-1) = 2 \). ### Step 3: Write the simplified quadratic equation After simplification, the quadratic equation becomes: \[ x^2 - 3x + 2 = 0 \] ### Step 4: Find the roots of the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 1, b = -3, c = 2 \). - The discriminant \( D = b^2 - 4ac = (-3)^2 - 4(1)(2) = 9 - 8 = 1 \). - The roots are: \[ x = \frac{3 \pm \sqrt{1}}{2} = \frac{3 \pm 1}{2} \] Thus, the roots are \( x = 2 \) and \( x = 1 \). Therefore, \( \alpha = 2 \) and \( \beta = 1 \). ### Step 5: Calculate \( \alpha^2 + \alpha\beta \) Now we can find \( \alpha^2 + \alpha\beta \): \[ \alpha^2 + \alpha\beta = 2^2 + (2)(1) = 4 + 2 = 6 \] ### Final Answer The value of \( \alpha^2 + \alpha\beta \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta +beta^2 is equal to :

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}

If P =3^sqrt(log_(3)2)-2^(sqrt(log_(2)3))and Q=log_(2)log_(3)log_(2)log _(sqrt(3))81, then

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-bx+cx^(2)) is equal to

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha, beta are the roots of x^(2)+3x+1=0 , then the equation whose roots 2-alpha, 2-beta is

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

VK JAISWAL ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(...

    Text Solution

    |

  2. Let f(x) = ax^2 + bx + c where a,b,c are integers. If sin\ pi/7 * sin\...

    Text Solution

    |

  3. Let a,b,c,d be distinct integers such that the equation (x-a) (x-b) (x...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of m, m le 16 for which the equ...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least rositive integral value of 'x' satisfying (e ^(x) -2) (sin (...

    Text Solution

    |

  8. The integral values of x for which x^2 +17x+71 is perfect square of a ...

    Text Solution

    |

  9. Let P (x)=x ^(6) -x ^(5) -x ^(3) -x ^(2) -x and alpha, beta, gamma, de...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre pi is a whole number ) for which ...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression ax ^(4)+bx^(3)-x ^(2)+2x+3 has the remainder 4x +3 w...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The sum of all real values of k for which the expression x ^(2)+2xy +k...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |