Home
Class 12
MATHS
If a+b+c=1, a^2+b^2+c^2=9 and a^3+b^3+c^...

If `a+b+c=1`, `a^2+b^2+c^2=9` and `a^3+b^3+c^3=1`, then `1/a + 1/b + 1/c` is (i)`0` (ii)`-1` (iii)`1` (iv)`3`

A

`2/3`

B

5

C

6

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the given equations and some algebraic identities. ### Step 1: Write down the given equations We have the following equations: 1. \( a + b + c = 1 \) (Equation 1) 2. \( a^2 + b^2 + c^2 = 9 \) (Equation 2) 3. \( a^3 + b^3 + c^3 = 1 \) (Equation 3) ### Step 2: Use the identity for the sum of squares We know the identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) \] Substituting the values from Equation 1 and Equation 2: \[ 9 = (1)^2 - 2(ab + bc + ca) \] This simplifies to: \[ 9 = 1 - 2(ab + bc + ca) \] Rearranging gives: \[ 2(ab + bc + ca) = 1 - 9 = -8 \] Thus, \[ ab + bc + ca = -4 \quad \text{(Equation 4)} \] ### Step 3: Use the identity for the sum of cubes We also have the identity: \[ a^3 + b^3 + c^3 = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) + 3abc \] Substituting the known values: \[ 1 = (1)(9 - (-4)) + 3abc \] This simplifies to: \[ 1 = 1 \cdot (9 + 4) + 3abc \] \[ 1 = 13 + 3abc \] Rearranging gives: \[ 3abc = 1 - 13 = -12 \] Thus, \[ abc = -4 \quad \text{(Equation 5)} \] ### Step 4: Find \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) Using the formula: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{ab + ac + bc}{abc} \] Substituting the values from Equation 4 and Equation 5: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{-4}{-4} = 1 \] ### Final Answer Thus, the value of \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) is \( 1 \). ### Options The correct option is (iii) \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=2,a^(2)+b^(2)+c^(2)=1 and abc = 3 then 1/a+1/b+1/c is equal to

If a/b+b/a=1, then a^3+b^3=? (a) 1 (b) -1 (c) 1/2 (d) 0

If a/b+b/a=\ -1, then a^3-b^3=? (a)1 (b) -1 (c) 1/2 (d) 0

If a, b, c are in GP, prove that a^ 2 b^ 2 c ^ 2 ( 1/ a ^ 3 +1/ b ^ 3 ​ +1/ c ^ 3 ​ )=a ^ 3 +b^ 3 +c^ 3 .

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

If a ,b and c are in A.P. and b-a ,c-b and a are in G.P., then a : b : c is (a). 1:2:3 (b). 1:3:5 (c). 2:3:4 (d). 1:2:4

If a+b+c=0 and a^2+b^2+c^2=1, then (a) a b+b c+c a=1/2 (b) a b+b c+c a=-1/2 (c) a^4+b^4+c^4=1/2 (d) a^4+b^4+c^4=3/2

Suppose a ,b, and c are in A.P. and a^2, b^2 and c^2 are in G.P. If a

Evaluate the following |(1, 1, 1),(a^2,b^2,c^2),(a^3,b^3,c^3)|

VK JAISWAL ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If a+b+c=1, a^2+b^2+c^2=9 and a^3+b^3+c^3=1, then 1/a + 1/b + 1/c is ...

    Text Solution

    |

  2. Let f(x) = ax^2 + bx + c where a,b,c are integers. If sin\ pi/7 * sin\...

    Text Solution

    |

  3. Let a,b,c,d be distinct integers such that the equation (x-a) (x-b) (x...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of m, m le 16 for which the equ...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least rositive integral value of 'x' satisfying (e ^(x) -2) (sin (...

    Text Solution

    |

  8. The integral values of x for which x^2 +17x+71 is perfect square of a ...

    Text Solution

    |

  9. Let P (x)=x ^(6) -x ^(5) -x ^(3) -x ^(2) -x and alpha, beta, gamma, de...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre pi is a whole number ) for which ...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression ax ^(4)+bx^(3)-x ^(2)+2x+3 has the remainder 4x +3 w...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The sum of all real values of k for which the expression x ^(2)+2xy +k...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |