Home
Class 12
MATHS
Consider the cubic equation in x , x ^(3...

Consider the cubic equation in `x , x ^(3) - x^(2) + (x- x ^(2)) sin theta + (x -x ^(2)) cos theta + (x-1) sin theta cos theta =0` whose roots are `alpha, beta , gamma. `
The value of `((alpha)/(2))^(2) + ((beta)/(2 )) ^(2) + ((gamma)/(2 ))^(2) =`

A

1

B

`1/2`

C

`2 cos theta`

D

`1/2(sin theta + cos theta + sin theta cos theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the cubic equation given by: \[ x^3 - x^2 + (x - x^2) \sin \theta + (x - x^2) \cos \theta + (x - 1) \sin \theta \cos \theta = 0 \] with roots \(\alpha\), \(\beta\), and \(\gamma\), we need to find the value of: \[ \left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2 \] ### Step 1: Rearranging the Equation First, we rearrange the cubic equation by grouping the terms: \[ x^3 - (1 + \sin \theta + \cos \theta)x^2 + (1 + \sin \theta + \cos \theta)x - \sin \theta \cos \theta = 0 \] ### Step 2: Identifying Coefficients From the standard form of a cubic equation \(ax^3 + bx^2 + cx + d = 0\), we identify: - \(a = 1\) - \(b = -(1 + \sin \theta + \cos \theta)\) - \(c = 1 + \sin \theta + \cos \theta\) - \(d = -\sin \theta \cos \theta\) ### Step 3: Using Vieta's Formulas According to Vieta's formulas for a cubic equation: 1. The sum of the roots \(\alpha + \beta + \gamma = -\frac{b}{a} = 1 + \sin \theta + \cos \theta\) 2. The sum of the product of the roots taken two at a time \(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = 1 + \sin \theta + \cos \theta\) 3. The product of the roots \(\alpha\beta\gamma = -\frac{d}{a} = \sin \theta \cos \theta\) ### Step 4: Finding \(\left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2\) We can express this as: \[ \left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2 = \frac{1}{4}(\alpha^2 + \beta^2 + \gamma^2) \] Using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the values from Vieta's formulas: \[ \alpha^2 + \beta^2 + \gamma^2 = (1 + \sin \theta + \cos \theta)^2 - 2(1 + \sin \theta + \cos \theta) \] ### Step 5: Simplifying the Expression Calculating \((1 + \sin \theta + \cos \theta)^2\): \[ = 1 + 2(\sin \theta + \cos \theta) + (\sin^2 \theta + \cos^2 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ = 1 + 2(\sin \theta + \cos \theta) + 1 = 2 + 2(\sin \theta + \cos \theta) \] Now substituting back: \[ \alpha^2 + \beta^2 + \gamma^2 = (2 + 2(\sin \theta + \cos \theta)) - 2(1 + \sin \theta + \cos \theta) \] This simplifies to: \[ = 2 + 2(\sin \theta + \cos \theta) - 2 - 2(\sin \theta + \cos \theta) = 0 \] ### Step 6: Final Calculation Thus, \[ \left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2 = \frac{1}{4} \cdot 0 = 0 \] ### Conclusion The value of \(\left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

Consider the cubic equation in x , x ^(3) - x^(2) + (x- x ^(2)) sin theta + (x -x ^(2)) cos theta + (x-1) sin theta cos theta =0 whose roots are alpha, beta , gamma. Number of value of theta in [0,2pi] for which at least two roots are equal, is :

Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta sin theta+cos theta+sin theta)x-sin theta. cos theta =0 Whose roots are x_1, x_2 and x_3

Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta sin theta+cos theta+sin theta)x-sin theta. cos theta =0 Whose roots are x_1, x_2 and x_3

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

If alpha, beta are the roots of x^(2)+3x+1=0 , then the equation whose roots 2-alpha, 2-beta is

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha, beta are the roots of x^(2)+2x-1=0 , then the equation whose roots are alpha^(2), beta^(2) is

VK JAISWAL ENGLISH-QUADRATIC EQUATIONS -EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. If alpha, beta the roots of equation (k + 1 )x ^(2) -(20k +14) x + 91...

    Text Solution

    |

  2. Let f (x) =x ^(2) + bx + c AA in R, (b,c, in R) attains its least val...

    Text Solution

    |

  3. Let f (x) =x ^(2) + bx + c AA in R, (b,c, in R) attains its least val...

    Text Solution

    |

  4. Let f (x) =x ^(2) + bx + c AA in R, (b,c, in R) attains its least val...

    Text Solution

    |

  5. Consider the equation log2 ^2 x- 4 log2 x- m^2 -2m-13=0,m in R.Let the...

    Text Solution

    |

  6. Consider the equation log (2)^(2) x -4 log (2)x-m^(2) -2m -13=0, m in ...

    Text Solution

    |

  7. The equation x ^(4) -2x ^(3) + 4x -1=0 has four distinct real roots x ...

    Text Solution

    |

  8. The equation x ^(4) -2x ^(3) + 4x -1=0 has four distinct real roots x ...

    Text Solution

    |

  9. Let f (x) be a polynomial of degree 5 with leading coefficient unity s...

    Text Solution

    |

  10. Let f (x) be a polynomial of degree 5 with leading coefficient unity,...

    Text Solution

    |

  11. Let f (x) be a polynomial of degree 5 with leading coefficient unity,...

    Text Solution

    |

  12. Consider the cubic equation in x , x ^(3) - x^(2) + (x- x ^(2)) sin th...

    Text Solution

    |

  13. Consider the cubic equation in x , x ^(3) - x^(2) + (x- x ^(2)) sin th...

    Text Solution

    |

  14. Let P(x) be quadratic polynomical with real coefficient such tht for a...

    Text Solution

    |

  15. Let P(x) be quadratic polynomical with real coefficient such tht for a...

    Text Solution

    |

  16. Let t be a ral number satifying 2t ^(2) -9t ^(2) + 30 -lamda =0 where ...

    Text Solution

    |

  17. If t is a real number satisfying the equation 2t^3-9t^2+30-a=0, then f...

    Text Solution

    |

  18. Let t be a ral number satifying 2t ^(2) -9t ^(2) + 30 -lamda =0 where ...

    Text Solution

    |

  19. Consider a quadratic expression f (x) =tx^(2) -(2t -1) x+ (5x -1) If...

    Text Solution

    |

  20. Consider a quadratic expression f (x) =tx^(2) -(2t -1) x+ (5x -1) I...

    Text Solution

    |