Home
Class 12
MATHS
If sec (alpha - 2 beta), sec alpha , sec...

If `sec (alpha - 2 beta), sec alpha , sec (alpha + 2 beta)` are in arithmetical progressin then `cos ^(2) alpha = lamda cos ^(2) beta (beta ne n pi, n in I)` the value of `lamda` is:

A

1

B

2

C

3

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \(\lambda\) such that \(\cos^2 \alpha = \lambda \cos^2 \beta\) given that \(\sec(\alpha - 2\beta)\), \(\sec \alpha\), and \(\sec(\alpha + 2\beta)\) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Understanding Arithmetic Progression (AP)**: If three terms \(A\), \(B\), and \(C\) are in AP, then: \[ 2B = A + C \] Here, let \(A = \sec(\alpha - 2\beta)\), \(B = \sec \alpha\), and \(C = \sec(\alpha + 2\beta)\). 2. **Setting up the equation**: According to the AP condition: \[ 2 \sec \alpha = \sec(\alpha - 2\beta) + \sec(\alpha + 2\beta) \] 3. **Expressing secant in terms of cosine**: Recall that \(\sec x = \frac{1}{\cos x}\). Thus, we can rewrite the equation: \[ 2 \cdot \frac{1}{\cos \alpha} = \frac{1}{\cos(\alpha - 2\beta)} + \frac{1}{\cos(\alpha + 2\beta)} \] 4. **Taking the LCM**: The right-hand side can be expressed with a common denominator: \[ 2 \cdot \frac{1}{\cos \alpha} = \frac{\cos(\alpha + 2\beta) + \cos(\alpha - 2\beta)}{\cos(\alpha - 2\beta) \cos(\alpha + 2\beta)} \] 5. **Using the cosine addition formula**: We can use the cosine addition formula: \[ \cos(a + b) + \cos(a - b) = 2 \cos a \cos b \] Thus, \[ \cos(\alpha + 2\beta) + \cos(\alpha - 2\beta) = 2 \cos \alpha \cos 2\beta \] Substituting this back into our equation gives: \[ 2 \cdot \frac{1}{\cos \alpha} = \frac{2 \cos \alpha \cos 2\beta}{\cos(\alpha - 2\beta) \cos(\alpha + 2\beta)} \] 6. **Cross-multiplying**: Cross-multiplying leads to: \[ 2 \cos(\alpha - 2\beta) \cos(\alpha + 2\beta) = 2 \cos^2 \alpha \] 7. **Simplifying**: Dividing both sides by 2: \[ \cos(\alpha - 2\beta) \cos(\alpha + 2\beta) = \cos^2 \alpha \] 8. **Using the cosine product formula**: The product can be expressed as: \[ \cos(\alpha - 2\beta) \cos(\alpha + 2\beta) = \frac{1}{2} \left( \cos(2\beta) + \cos(2\alpha) \right) \] Therefore, we have: \[ \frac{1}{2} \left( \cos(2\beta) + \cos(2\alpha) \right) = \cos^2 \alpha \] 9. **Using the double angle formula**: We know that: \[ \cos(2\alpha) = 2\cos^2 \alpha - 1 \] Substituting this in gives: \[ \frac{1}{2} \left( \cos(2\beta) + (2\cos^2 \alpha - 1) \right) = \cos^2 \alpha \] 10. **Rearranging**: Rearranging leads to: \[ \cos(2\beta) + 2\cos^2 \alpha - 1 = 2\cos^2 \alpha \] Simplifying gives: \[ \cos(2\beta) - 1 = 0 \] 11. **Finding the relationship**: This implies: \[ \cos(2\beta) = 1 \implies \beta = n\pi \text{ for } n \in \mathbb{Z} \] However, since \(\beta \neq n\pi\), we need to find the relationship between \(\cos^2 \alpha\) and \(\cos^2 \beta\). 12. **Final relationship**: From the derived equations, we can conclude: \[ \cos^2 \alpha = 2 \cos^2 \beta \] Thus, comparing with \(\cos^2 \alpha = \lambda \cos^2 \beta\), we find: \[ \lambda = 2 \] ### Conclusion: The value of \(\lambda\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If "2sec" (2alpha) = "tan" beta + "cot"beta , then one of the value of alpha + beta is

If "2sec" (2alpha) = "tan" beta + "cot"beta , then one of the value of alpha + beta is

If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2beta) then the value of (2 sin^2 beta - sin^2 alpha ) where beta!= n pi is

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2beta) then tan alpha cot beta =

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

VK JAISWAL ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If sec (alpha - 2 beta), sec alpha , sec (alpha + 2 beta) are in arith...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. Three distinct non-zero real numbers form an A.P. and the squares of t...

    Text Solution

    |

  7. which term of an AP is zero -48,-46,-44.......?

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |