Home
Class 12
MATHS
If ai , i= 1,2,3,4 be four real members ...

If `a_i , i= 1,2,3,4` be four real members of same sign, then the minimum value of ` sum (a_i/a_j) , i , j in {1,2,3,4} , i != j ` is : (a) 6 (b) 8 (c) 12 (d) 24

A

6

B

8

C

12

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression: \[ S = \sum_{i=1}^{4} \sum_{j=1, j \neq i}^{4} \frac{a_i}{a_j} \] This expression can be expanded as follows: 1. **Expand the expression**: \[ S = \frac{a_1}{a_2} + \frac{a_1}{a_3} + \frac{a_1}{a_4} + \frac{a_2}{a_1} + \frac{a_2}{a_3} + \frac{a_2}{a_4} + \frac{a_3}{a_1} + \frac{a_3}{a_2} + \frac{a_3}{a_4} + \frac{a_4}{a_1} + \frac{a_4}{a_2} + \frac{a_4}{a_3} \] 2. **Group the terms**: Notice that for each pair \( (i, j) \), we have both \( \frac{a_i}{a_j} \) and \( \frac{a_j}{a_i} \). For example, \( \frac{a_1}{a_2} + \frac{a_2}{a_1} \). 3. **Apply the AM-GM inequality**: For each pair \( \frac{a_i}{a_j} + \frac{a_j}{a_i} \), by the AM-GM inequality: \[ \frac{a_i}{a_j} + \frac{a_j}{a_i} \geq 2 \] 4. **Count the pairs**: There are a total of 12 pairs (since there are 4 values of \( a_i \) and each can pair with 3 others). Each pair contributes at least 2 to the sum. 5. **Calculate the minimum value**: Since there are 6 pairs of the form \( \frac{a_i}{a_j} + \frac{a_j}{a_i} \), the minimum value of \( S \) is: \[ S \geq 6 \times 2 = 12 \] Thus, the minimum value of \( S \) is **12**. ### Final Answer: The minimum value of \( \sum \frac{a_i}{a_j} \) for \( i \neq j \) is **12** (Option C).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

The circle orthogonal to the three circles x^2+y^2+a_i x +b_i y+c=0 , (i=1,2,3) is

What is the value of sum _(i+j = odd 1 le | lt | le 10) (i +j) - sum_(i + j = even 1 le | lt | le 10)(i+j) ?

For a 2xx2 matrix A=[a_(i j)] whose elements are given by a_(i j)=i/j , write the value of a_(12) .

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

In given figure vec A B=3 hat i- hat j , vec A C=2 hat i+3 hat j and DE= 4 hat i-2 hat j . Then the area of the shaded region is (a)5 (b) 6 (c) 7 (d)(8)

The positon vector of the centroid of the triangle ABC is 2i+4j+2k . If the position vector of the vector A is 2i+6j+4k., then the position vector of midpointof BC is (A) 2i+3j+k (B) 2i+3jk (C) 2i-3j-k (D) -2i-3j-k

Let P=[a_(i j)] be a 3xx3 matrix and let Q=[b_(i j)],w h e r eb_(i j)=2^(i+j)a_(i j)for1lt=i ,jlt=3. If the determinant of P is 2, then the determinant of the matrix Q is 2^(10) b. 2^(11) c. 2^(12) d. 2^(13)

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

The unit vector parallel to the resultant of the vectors A = 4i+3j + 6k and B = -i + 3j-8k is

VK JAISWAL ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If ai , i= 1,2,3,4 be four real members of same sign, then the minimum...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. Three distinct non-zero real numbers form an A.P. and the squares of t...

    Text Solution

    |

  7. which term of an AP is zero -48,-46,-44.......?

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |