Home
Class 12
MATHS
If sum ( r -1) ^(n) T(r) = (n (n +1)(n+2...

If `sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=`

A

2008

B

3012

C

4016

D

8032

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the logic presented in the video transcript while ensuring clarity and coherence in our explanation. ### Step-by-Step Solution: 1. **Understanding the Given Expression**: We are given that: \[ \sum_{r=1}^{n} T_r = \frac{n(n+1)(n+2)}{3} \] Here, \( T_r \) represents a sequence defined by the formula. 2. **Finding \( T_r \)**: From the expression, we can derive \( T_r \) using the difference of sums: \[ T_r = \sum_{r=1}^{n} T_r - \sum_{r=1}^{n-1} T_r \] This implies: \[ T_r = \frac{n(n+1)(n+2)}{3} - \frac{(n-1)n(n+1)}{3} \] 3. **Simplifying \( T_r \)**: Let's simplify \( T_r \): \[ T_r = \frac{n(n+1)(n+2) - (n-1)n(n+1)}{3} \] Expanding both terms: \[ T_r = \frac{n(n+1)(n+2) - (n^3 - n^2)}{3} \] Simplifying further: \[ T_r = \frac{(n^3 + 3n^2 + 2n - n^3 + n^2)}{3} = \frac{4n^2 + 2n}{3} = \frac{2n(2n + 1)}{3} \] 4. **Finding the Limit**: We need to evaluate: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{3012}{T_r} \] Substituting \( T_r \): \[ \sum_{r=1}^{n} \frac{3012}{T_r} = \sum_{r=1}^{n} \frac{3012 \cdot 3}{2r(2r + 1)} = \sum_{r=1}^{n} \frac{9036}{2r(2r + 1)} \] 5. **Using Partial Fraction Decomposition**: We can express: \[ \frac{9036}{2r(2r + 1)} = \frac{A}{r} + \frac{B}{2r + 1} \] Solving for \( A \) and \( B \): \[ 9036 = A(2r + 1) + Br \implies A = 9036, B = -9036 \] 6. **Evaluating the Series**: Thus, we can write: \[ \sum_{r=1}^{n} \left( \frac{9036}{r} - \frac{9036}{2r + 1} \right) \] This series telescopes, leading to: \[ 9036 \left( \ln(n) - \ln(n + 1) \right) \approx 9036 \cdot \frac{1}{n + 1} \] 7. **Taking the Limit**: Finally, we take the limit as \( n \to \infty \): \[ \lim_{n \to \infty} 9036 \cdot \frac{1}{n + 1} = 9036 \cdot 0 = 0 \] ### Final Answer: The limit evaluates to: \[ \boxed{3012} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

VK JAISWAL ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If sum ( r -1) ^(n) T(r) = (n (n +1)(n+2))/(3), then lim (x to oo) sum...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. Three distinct non-zero real numbers form an A.P. and the squares of t...

    Text Solution

    |

  7. which term of an AP is zero -48,-46,-44.......?

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |