Home
Class 12
MATHS
Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt...

Let `f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N` then the remainder when `f (1) + f (2) + f (3) + ..... + f (60)` is divided by 9 is.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n + 1} + \sqrt{2n - 1}} \) for \( n = 1, 2, \ldots, 60 \) and find the remainder when the sum \( f(1) + f(2) + \ldots + f(60) \) is divided by 9. ### Step 1: Simplifying \( f(n) \) We start with the function: \[ f(n) = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n + 1} + \sqrt{2n - 1}} \] We can rewrite \( 4n \) as \( 2n + 2n \) and \( \sqrt{4n^2 - 1} \) as \( \sqrt{(2n)^2 - 1^2} \). ### Step 2: Rationalizing the Denominator We can rationalize the denominator: \[ f(n) = \frac{(4n + \sqrt{4n^2 - 1})(\sqrt{2n + 1} - \sqrt{2n - 1})}{(\sqrt{2n + 1} + \sqrt{2n - 1})(\sqrt{2n + 1} - \sqrt{2n - 1})} \] The denominator simplifies to: \[ (\sqrt{2n + 1})^2 - (\sqrt{2n - 1})^2 = (2n + 1) - (2n - 1) = 2 \] ### Step 3: Evaluating the Numerator Now, we simplify the numerator: \[ (4n + \sqrt{4n^2 - 1})(\sqrt{2n + 1} - \sqrt{2n - 1}) = (4n)(\sqrt{2n + 1} - \sqrt{2n - 1}) + \sqrt{4n^2 - 1}(\sqrt{2n + 1} - \sqrt{2n - 1}) \] ### Step 4: Finding a Pattern After simplifying, we can see that: \[ f(n) = \frac{2n + 1}{2} \left( \sqrt{2n + 1} - \sqrt{2n - 1} \right) \] This leads us to: \[ f(n) = \frac{1}{2} \left( (2n + 1)^{3/2} - (2n - 1)^{3/2} \right) \] ### Step 5: Summing \( f(n) \) Now we need to compute: \[ S = f(1) + f(2) + \ldots + f(60) \] Using the telescoping nature of the series, we find that: \[ S = \frac{1}{2} \left( (121^{3/2} - 1^{3/2}) + (119^{3/2} - 3^{3/2}) + \ldots + (1^{3/2} - 119^{3/2}) \right) \] ### Step 6: Final Calculation The terms will cancel out, and we are left with: \[ S = \frac{1}{2} \left( 121^{3/2} - 1^{3/2} \right) = \frac{1}{2} (1331 - 1) = \frac{1330}{2} = 665 \] ### Step 7: Finding the Remainder Finally, we need to find the remainder when \( 665 \) is divided by \( 9 \): \[ 665 \div 9 = 73 \quad \text{remainder } 8 \] Thus, the final answer is: \[ \text{The remainder when } f(1) + f(2) + \ldots + f(60) \text{ is divided by } 9 \text{ is } 8. \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|4 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1)) . Then ((Sigma_(k=1)^(40)f(k))/(100)) is equal to

If l=int_(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] denotes G.I.F)

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

Let f(x) = (x^2 - 1)^(n+1) * (x^2 + x + 1) . Then f(x) has local extremum at x = 1 , when n is (A) n = 2 (B) n = 4 (C) n = 3 (D) n = 5

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

VK JAISWAL ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  2. If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  3. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  4. Three distinct non-zero real numbers form an A.P. and the squares of t...

    Text Solution

    |

  5. which term of an AP is zero -48,-46,-44.......?

    Text Solution

    |

  6. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  7. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  8. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  9. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  10. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  11. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  12. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  13. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  14. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  15. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  16. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  17. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  18. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  19. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |

  20. Let a and b be positive integers. The values. The value of xyz is 55 a...

    Text Solution

    |