Home
Class 12
MATHS
Let a (1), a(2), a(3),…….., a(n) be real...

Let `a _(1), a_(2), a_(3),…….., a_(n)` be real numbers in arithmatic progression such that `a _(1) =15 and a_(2)` is an integer. Given ` sum _( r=1) ^(10) (a_(r)) ^(2) =1185`. If `S_(n) = sum _(r =1) ^(n) a_(r) and ` maximum value of `n` is `N` for which `S_(n) ge S_((n +1)), ` then find `N -10.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will break down the information given and derive the necessary equations. ### Step 1: Understand the Arithmetic Progression We are given that \( a_1 = 15 \) and \( a_2 \) is an integer. The general term of an arithmetic progression (AP) can be expressed as: \[ a_r = a_1 + (r-1)d \] where \( d \) is the common difference. ### Step 2: Write the Expression for \( S_n \) The sum of the first \( n \) terms of the AP is given by: \[ S_n = \sum_{r=1}^{n} a_r = n \cdot a_1 + \frac{(n-1)n}{2} d \] ### Step 3: Calculate \( \sum_{r=1}^{10} a_r^2 \) We know: \[ \sum_{r=1}^{10} a_r^2 = 1185 \] Substituting the expression for \( a_r \): \[ \sum_{r=1}^{10} (a_1 + (r-1)d)^2 = \sum_{r=1}^{10} (15 + (r-1)d)^2 \] Expanding this: \[ = \sum_{r=1}^{10} (15^2 + 2 \cdot 15 \cdot (r-1)d + (r-1)^2d^2) \] \[ = 10 \cdot 225 + 2 \cdot 15d \sum_{r=1}^{10} (r-1) + d^2 \sum_{r=1}^{10} (r-1)^2 \] ### Step 4: Calculate the Summations 1. \( \sum_{r=1}^{10} (r-1) = 0 + 1 + 2 + \ldots + 9 = \frac{9 \cdot 10}{2} = 45 \) 2. \( \sum_{r=1}^{10} (r-1)^2 = 0^2 + 1^2 + 2^2 + \ldots + 9^2 = \frac{9 \cdot 10 \cdot 19}{6} = 285 \) ### Step 5: Substitute Back into the Equation Substituting these values back: \[ 1185 = 2250 + 2 \cdot 15d \cdot 45 + 285d^2 \] \[ 1185 = 2250 + 1350d + 285d^2 \] Rearranging gives: \[ 285d^2 + 1350d + 2250 - 1185 = 0 \] \[ 285d^2 + 1350d + 1065 = 0 \] ### Step 6: Solve the Quadratic Equation Using the quadratic formula \( d = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ d = \frac{-1350 \pm \sqrt{1350^2 - 4 \cdot 285 \cdot 1065}}{2 \cdot 285} \] Calculating the discriminant: \[ 1350^2 = 1822500 \] \[ 4 \cdot 285 \cdot 1065 = 1214100 \] \[ \sqrt{1822500 - 1214100} = \sqrt{608400} = 780 \] Thus: \[ d = \frac{-1350 \pm 780}{570} \] Calculating the two possible values for \( d \): 1. \( d = \frac{-570}{570} = -1 \) 2. \( d = \frac{-2130}{570} = -3.7368 \) (not an integer) ### Step 7: Determine \( N \) Since \( d = -1 \), we have: \[ a_n = 15 + (n-1)(-1) = 16 - n \] To find \( N \) such that \( S_n \geq S_{n+1} \): \[ S_{n+1} - S_n = a_{n+1} = 16 - (n + 1) < 0 \] This gives: \[ 16 - (n + 1) < 0 \implies n > 15 \] The maximum integer \( n \) is 16. ### Step 8: Calculate \( N - 10 \) Thus: \[ N - 10 = 16 - 10 = 6 \] ### Final Answer The final answer is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|4 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2),….,a_(n) are n(gt1) real numbers, then

Let a_(1),a_(2),a_(3), . . . be a harmonic progression with a_(1)=5anda_(20)=25 . The least positive integer n for which a_(n)lt0 , is

Find a_(1) and a_(9) if a_(n) is given by a_(n) = (n^(2))/(n+1)

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

Let a_(1),a_(2)…,a_(n) be a non-negative real numbers such that a_(1)+a_(2)+…+a_(n)=m and let S=sum_(iltj) a_(i)a_(j) , then

For a sequence {a_(n)}, a_(1) = 2 and (a_(n+1))/(a_(n)) = 1/3 , Then sum_(r=1)^(oo) a_(r) is

If a_(1),a_(2),a_(3),…a_(n+1) are in arithmetic progression, then sum_(k=0)^(n) .^(n)C_(k.a_(k+1) is equal to (a) 2^(n)(a_(1)+a_(n+1)) (b) 2^(n-1)(a_(1)+a_(n+1)) (c) 2^(n+1)(a_(1)+a_(n+1)) (d) (a_(1)+a_(n+1))

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

VK JAISWAL ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  2. If lim ( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  3. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  4. Three distinct non-zero real numbers form an A.P. and the squares of t...

    Text Solution

    |

  5. which term of an AP is zero -48,-46,-44.......?

    Text Solution

    |

  6. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  7. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  8. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  9. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  10. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  11. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  12. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  13. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  14. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  15. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  16. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  17. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  18. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  19. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |

  20. Let a and b be positive integers. The values. The value of xyz is 55 a...

    Text Solution

    |