Home
Class 12
MATHS
Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0,...

`Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)|` is divisible by a.`a+b` b. `a+2b` c. `2a+3b` d. `a^2`

A

(2a+b) is a factor of f(a,b)

B

(a+2b) is a factor of f(a,b)

C

(a+b) is a factor of f(a,b)

D

a is factor of f (a,b)

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

/_\=|(a,a^2,0),(1,2a+b,a+b),(0,1,2a+3b)| is divisible by a+b b. a+2b c. 2a+3b d. a^2

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If [(a-b,2a+c),(2a-b,3c+d)]=[(-1, 5),( 0, 13)] , find the value of bdot

If Delta_1=|(1, 1 ,1),(a, b, c ),(a^2,b^2,c^2)|,Delta_2=|(1,b c, a),(1,c a, b),(1,a b, c)|,t h e n (a) Delta_1+Delta_2=0 (b) Delta_1+2Delta_2=0 (c) Delta_1=Delta_2 (d) none of these

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

If a=2b ,\ then a : b= (a) 2:1 (b) 1:2 (c) 3:4 (d) 4:3

The medians A D\ a n d\ B E of a triangle with vertices A(0, b),\ B(0,0)\ a n d\ C(a ,0) are perpendicular to each other, if a=b/2 b. b=a/2 c. a b=1 d. a=+-sqrt(2)b