Home
Class 12
MATHS
Let lim(n to oo) n sin (2 pi e lfloorn)...

Let `lim_(n to oo)` n sin (`2 pi` e `lfloorn`)= k `pi`, where `n pi N`. Find k :

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate: lim_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)) ,where n in N

Lim_(n to oo) (-1)^(n)sin(pisqrt(n^(2)+n)), n epsilon N is

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

lim_(n->oo)sin(x/2^n)/(x/2^n)

Evaluate sin{ n pi+(-1)^(n) (pi)/(4) , where n is an integer.

Evaluate sin{ n pi+(-1)^(n) (pi)/(4) , where n is an integer.

Evaluate tan{(-1)^n pi/4} where n is an integer

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =