Home
Class 12
MATHS
The number N=""^(20)C(7)-""^(20)C(8)+""^...

The number `N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20)` is not divisible by :

A

3

B

7

C

11

D

19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ N = \binom{20}{7} - \binom{20}{8} + \binom{20}{9} - \binom{20}{10} + \ldots - \binom{20}{20} \] and determine which number it is not divisible by. ### Step 1: Understanding the Expression The expression can be rewritten using the binomial theorem. We know that: \[ (1 + x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r \] For our case, we can use \( x = -1 \) to find the alternating sum: \[ (1 - 1)^{20} = \sum_{r=0}^{20} \binom{20}{r} (-1)^r = 0 \] This means that the sum of all the binomial coefficients from \( \binom{20}{0} \) to \( \binom{20}{20} \) is zero. ### Step 2: Splitting the Expression We can split the expression into even and odd indexed terms: \[ N = \left( \binom{20}{7} + \binom{20}{9} + \binom{20}{11} + \ldots + \binom{20}{19} \right) - \left( \binom{20}{8} + \binom{20}{10} + \ldots + \binom{20}{20} \right) \] ### Step 3: Using Binomial Coefficients Properties We can also use the identity: \[ \binom{n}{r} = \binom{n}{n-r} \] This allows us to rewrite the terms. For instance: \[ \binom{20}{8} = \binom{20}{12}, \quad \binom{20}{9} = \binom{20}{11}, \quad \text{and so on.} \] ### Step 4: Evaluating the Expression Using the property of binomial coefficients, we can express \( N \) as follows: \[ N = \sum_{k=0}^{6} \left( \binom{20}{7+k} - \binom{20}{8+k} \right) \] ### Step 5: Calculate \( N \) We can compute \( N \) directly: \[ N = \binom{20}{7} - \binom{20}{8} + \binom{20}{9} - \binom{20}{10} + \ldots - \binom{20}{20} \] Calculating these values, we find: \[ \begin{align*} \binom{20}{7} & = 77520 \\ \binom{20}{8} & = 125970 \\ \binom{20}{9} & = 167960 \\ \binom{20}{10} & = 184756 \\ \ldots & \\ \binom{20}{20} & = 1 \\ \end{align*} \] After performing the calculations, we find: \[ N = 27132 \] ### Step 6: Check Divisibility Now we need to check the divisibility of \( 27132 \) by the given options: \( 3, 7, 11, 19 \). - **Divisibility by 3**: \( 27132 \div 3 = 9044 \) (divisible) - **Divisibility by 7**: \( 27132 \div 7 = 3876 \) (divisible) - **Divisibility by 19**: \( 27132 \div 19 = 1422 \) (divisible) - **Divisibility by 11**: \( 27132 \div 11 = 2466.545 \) (not divisible) ### Conclusion The number \( N = 27132 \) is **not divisible by 11**.
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos

Similar Questions

Explore conceptually related problems

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is divisible by :

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

The sum of the series ""^20C_0 - ""^20C_1 + ""^20C_2 - ""^20C_3 +…….""^20C_10 is

The sum of the series ""^20 C_0-""^20 C_1+""^20C_2-""^20C_3+...-...+""^20C_10 is:

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

VK JAISWAL ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. The number N=""^(20)C(7)-""^(20)C(8)+""^(20)C(9)-""^(20)C(10)+….. -""^...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  4. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  5. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  6. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  7. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  8. Let n in N, S(n)=sum(r=0)^(3n)(""^(3n)C(r )) and T(n)=sum(r=0)^(n)(""^...

    Text Solution

    |

  9. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  10. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  11. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  14. Let the sum of all divisiors of the form 2^(p)*3^(q) (with p, q posit...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  17. Let S(n)=""^(n)C(0)""^(n)C(1)+""^(n)C(1)""^(n)C(2)+…..+""^(n)C(n-1)""^...

    Text Solution

    |