Home
Class 12
MATHS
If alpha(1), alpha(2), …….., alpha(n) a...

If `alpha_(1), alpha_(2), …….., alpha_(n)` are the `n,n^(th)` roots of unity, `alpha_(r )=e (i2(r-1)pi)/(n), r=1,2,…n` then `""^(n)C_(1)alpha_(1)+""^(n)C_(2)alpha_(2)+…..+""^(n)C_(n)alpha_(n)` is equal to :

A

`(1+(alpha_(2))/(alpha_(1)))^(n)-1`

B

`(alpha_(1))/(2)[(1+alpha_(1))^(n)-1]`

C

`(alpha_(1)+alpha_(n-1)-1)/(2)`

D

`(alpha_(1)+alpha_(n-1))^(n)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \binom{n}{1} \alpha_1 + \binom{n}{2} \alpha_2 + \ldots + \binom{n}{n} \alpha_n \] where \(\alpha_r = e^{i \frac{2\pi (r-1)}{n}}\) for \(r = 1, 2, \ldots, n\), and \(\alpha_1, \alpha_2, \ldots, \alpha_n\) are the \(n\)-th roots of unity. ### Step 1: Understanding the Roots of Unity The \(n\)-th roots of unity are given by: \[ \alpha_r = e^{i \frac{2\pi (r-1)}{n}} \quad \text{for } r = 1, 2, \ldots, n \] These roots can be represented as: \[ \alpha_1 = 1, \quad \alpha_2 = e^{i \frac{2\pi}{n}}, \quad \alpha_3 = e^{i \frac{4\pi}{n}}, \ldots, \quad \alpha_n = e^{i \frac{2(n-1)\pi}{n}} \] ### Step 2: Setting Up the Expression We need to evaluate: \[ S = \binom{n}{1} \alpha_1 + \binom{n}{2} \alpha_2 + \ldots + \binom{n}{n} \alpha_n \] ### Step 3: Using the Binomial Theorem We can relate this sum to the binomial expansion. The binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] If we let \(x = \alpha\), we can express our sum \(S\) as: \[ S = \sum_{r=1}^{n} \binom{n}{r} \alpha_r = \sum_{r=1}^{n} \binom{n}{r} e^{i \frac{2\pi (r-1)}{n}} \] ### Step 4: Adding and Subtracting the Zero Term We can add and subtract the term for \(r=0\): \[ S = \left( \sum_{r=0}^{n} \binom{n}{r} \alpha_r \right) - \binom{n}{0} \] This gives us: \[ S = (1 + \alpha_1)^n - 1 \] ### Step 5: Evaluating the Final Expression Now we can evaluate: \[ S = (1 + 1)^n - 1 = 2^n - 1 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{2^n - 1} \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos

Similar Questions

Explore conceptually related problems

If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity, then sum_(i=1)^(n-1)(1)/(2-alpha^(i)) is equal to:

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the value of (3-alpha)(3-alpha^(2))(3-alpha^(3))……(3-alpha^(n-1)) , is

If 1,alpha,alpha^(2),………..,alpha^(n-1) are the n, n^(th) roots of unity and z_(1) and z_(2) are any two complex numbers such that sum_(r=0)^(n-1)|z_(1)+alpha^(R ) z_(2)|^(2)=lambda(|z_(1)|^(2)+|z_(2)|^(2)) , then lambda=

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If 1,alpha,alpha^2,alpha^3,......,alpha^(n-1) are n n^(th) roots of unity, then find the value of (2011-alpha)(2011-alpha^2)....(2011-alpha^(n-1))

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

VK JAISWAL ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. If alpha(1), alpha(2), …….., alpha(n) are the n,n^(th) roots of unity...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  4. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  5. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  6. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  7. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  8. Let n in N, S(n)=sum(r=0)^(3n)(""^(3n)C(r )) and T(n)=sum(r=0)^(n)(""^...

    Text Solution

    |

  9. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  10. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  11. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  14. Let the sum of all divisiors of the form 2^(p)*3^(q) (with p, q posit...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  17. Let S(n)=""^(n)C(0)""^(n)C(1)+""^(n)C(1)""^(n)C(2)+…..+""^(n)C(n-1)""^...

    Text Solution

    |