Home
Class 12
MATHS
The expression (""^(10)C(0))^(2)-(""^(...

The expression `(""^(10)C_(0))^(2)-(""^(10)C_(1))^(2)+(""^(10)C_(2))^(2)-……+(""^(10)C_(8))^(2)-(""^(10)C_(9))^(2)+(""^(10)C_(10))^(2)` equals :

A

`10!`

B

`(""^(10)C_(5))^(2)`

C

`""^(_10)C_(5)`

D

`""^(10)C_(5)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos

Similar Questions

Explore conceptually related problems

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

Prove the following identieties using the theory of permutation where C_(0),C_(1),C_(2),……C_(n) are the combinatorial coefficents in the expansion of (1+x)^n,n in N: ""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

Prove that ^10 C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2+-^(10)C_(10)(x-10)^2=x^2

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

VK JAISWAL ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. The expression (""^(10)C(0))^(2)-(""^(10)C(1))^(2)+(""^(10)C(2))^(2)...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  4. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  5. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  6. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  7. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  8. Let n in N, S(n)=sum(r=0)^(3n)(""^(3n)C(r )) and T(n)=sum(r=0)^(n)(""^...

    Text Solution

    |

  9. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  10. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  11. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  14. Let the sum of all divisiors of the form 2^(p)*3^(q) (with p, q posit...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  17. Let S(n)=""^(n)C(0)""^(n)C(1)+""^(n)C(1)""^(n)C(2)+…..+""^(n)C(n-1)""^...

    Text Solution

    |