Home
Class 12
MATHS
Evaluatesum(i=0)^(n)sum(j=0)^(n)sum(k=0)...

Evaluate`sum_(i=0)^(n)sum_(j=0)^(n)sum_(k=0)^(n)((n),(i))((n),(j))((n),(k)), where((n),(r))=""^(n)C_(r)`: (a) is less than 500 if n = 3 (b) is greater than 600 if n = 3 (c) is less than 5000 if n = 4 (d) is greater than 4000 if n = 4

A

is less than 500 if n = 3

B

is greater than 600 if n = 3

C

is less than 5000 if n = 4

D

is greater than 4000 if n = 4

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} \binom{n}{i} \binom{n}{j} \binom{n}{k}, \] we can follow these steps: ### Step 1: Rewrite the Expression We start by recognizing that the summation over \(k\) can be factored out since \(\binom{n}{i}\) and \(\binom{n}{j}\) are constants with respect to \(k\): \[ \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} \sum_{k=0}^{n} \binom{n}{k}. \] ### Step 2: Evaluate the Innermost Sum Next, we evaluate the innermost sum: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n. \] This follows from the binomial theorem, which states that the sum of the binomial coefficients for a given \(n\) equals \(2^n\). ### Step 3: Substitute Back into the Expression Substituting back, we have: \[ \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} \cdot 2^n. \] ### Step 4: Factor Out the Constant Now we can factor out \(2^n\): \[ 2^n \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j}. \] ### Step 5: Evaluate the Remaining Double Sum The remaining double sum can be simplified as follows: \[ \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{n} \binom{n}{j} = \left(\sum_{i=0}^{n} \binom{n}{i}\right) \left(\sum_{j=0}^{n} \binom{n}{j}\right) = 2^n \cdot 2^n = 2^{2n}. \] ### Step 6: Combine Everything Now we combine everything: \[ 2^n \cdot 2^{2n} = 2^{3n}. \] ### Step 7: Evaluate for Specific Values of \(n\) Now we can evaluate this for \(n = 3\) and \(n = 4\): 1. For \(n = 3\): \[ 2^{3 \cdot 3} = 2^9 = 512. \] 2. For \(n = 4\): \[ 2^{3 \cdot 4} = 2^{12} = 4096. \] ### Step 8: Check the Options Now we can check the options given in the question: - For \(n = 3\), \(512\) is: - (a) less than 500: **False** - (b) greater than 600: **False** - For \(n = 4\), \(4096\) is: - (c) less than 5000: **True** - (d) greater than 4000: **True** ### Conclusion Thus, the correct options are (c) and (d).
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|16 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|16 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

For all n in N, n^(4) is less than

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

For a non singular matrix A of order n the rank of A is (A) less than n (B) equal to n (C) greater than n (D) none of these