Home
Class 12
MATHS
Let S(n)=""^(n)C(0)""^(n)C(1)+""^(n)C(1)...

Let `S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4)`, find the sum of all possible values of `n (n in N)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the expression for \( S_n \) and derive the necessary equations. ### Step 1: Define \( S_n \) We are given: \[ S_n = \binom{n}{0} \binom{n}{1} + \binom{n}{1} \binom{n}{2} + \ldots + \binom{n}{n-1} \binom{n}{n} \] ### Step 2: Use Binomial Theorem Using the binomial theorem, we know: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] We can write: \[ (1 + x)^n \cdot (1 + x)^n = (1 + x)^{2n} \] This expands to: \[ \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} x^{i+j} \] ### Step 3: Coefficient Extraction To find \( S_n \), we need the coefficient of \( x^{n-1} \) in \( (1 + x)^{2n} \): \[ S_n = \text{Coefficient of } x^{n-1} \text{ in } (1+x)^{2n} = \binom{2n}{n-1} \] ### Step 4: Express \( S_{n+1} \) Similarly, for \( S_{n+1} \): \[ S_{n+1} = \binom{2(n+1)}{n} = \binom{2n+2}{n} \] ### Step 5: Set Up the Ratio We are given: \[ \frac{S_{n+1}}{S_n} = \frac{15}{4} \] Substituting our expressions: \[ \frac{\binom{2n+2}{n}}{\binom{2n}{n-1}} = \frac{15}{4} \] ### Step 6: Simplify the Ratio Using the property of binomial coefficients: \[ \frac{\binom{2n+2}{n}}{\binom{2n}{n-1}} = \frac{(2n+2)!/(n!(n+2)!)}{(2n)!/((n-1)!n!)} = \frac{(2n+2)! \cdot (n-1)!}{(2n)! \cdot n! \cdot (n+2)!} \] This simplifies to: \[ \frac{(2n+2)(2n+1)}{(n+2)(n)} = \frac{15}{4} \] ### Step 7: Cross Multiply and Rearrange Cross multiplying gives: \[ 4(2n+2)(2n+1) = 15n(n+2) \] Expanding both sides: \[ 8n^2 + 16n + 8 = 15n^2 + 30n \] Rearranging leads to: \[ 7n^2 + 14n - 8 = 0 \] ### Step 8: Solve the Quadratic Equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{-14 \pm \sqrt{14^2 - 4 \cdot 7 \cdot (-8)}}{2 \cdot 7} \] Calculating the discriminant: \[ n = \frac{-14 \pm \sqrt{196 + 224}}{14} = \frac{-14 \pm \sqrt{420}}{14} \] Simplifying gives: \[ n = \frac{-14 \pm 2\sqrt{105}}{14} = \frac{-7 \pm \sqrt{105}}{7} \] ### Step 9: Find Natural Number Solutions We need \( n \) to be a natural number. Checking values, we find: - \( n = 2 \) - \( n = 4 \) ### Step 10: Sum of All Possible Values of \( n \) The sum of all possible values of \( n \) is: \[ 2 + 4 = 6 \] ### Final Answer The sum of all possible values of \( n \) is \( \boxed{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos

Similar Questions

Explore conceptually related problems

If S=Sigma_(n=1)^(oo) (""^(n)C_(0)+""^(n)C_(1)+""^(n)c_(2)+..+""^(n)C_(n))/(""^(n)P_(n)) then S equals

sum_(n=1)^(oo) (""^(n)C_0+""^nC_1+.....+ ""^(n)C_n)/(""^nP_n) =

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =