Home
Class 12
MATHS
If 2^(2010)=a(n)10^(n)+a(n-1)10^(n-1)+……...

If `2^(2010)=a_(n)10^(n)+a_(n-1)10^(n-1)+………..+a_(2)10^(2)+a_(1)*10+a_(0)`, where `a_(i) in {0, 1, 2, ………, 9}` for all `i=0,1, 2,3, …………, n`, then `n=`

A

603

B

604

C

605

D

606

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) in the representation of the number \( 2^{2010} \) in the form of a polynomial in base 10. The steps are as follows: ### Step 1: Understand the representation The number \( 2^{2010} \) can be expressed in the form: \[ 2^{2010} = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \ldots + a_1 \cdot 10 + a_0 \] where \( a_i \) are the digits of the number in base 10. ### Step 2: Determine the number of digits To find \( n \), we need to determine the number of digits in \( 2^{2010} \). The number of digits \( d \) in a number \( x \) can be found using the formula: \[ d = \lfloor \log_{10} x \rfloor + 1 \] Thus, we need to calculate: \[ d = \lfloor \log_{10} (2^{2010}) \rfloor + 1 \] ### Step 3: Apply logarithmic properties Using the properties of logarithms, we can simplify: \[ \log_{10} (2^{2010}) = 2010 \cdot \log_{10} 2 \] Now, we need to find \( \log_{10} 2 \). The approximate value is: \[ \log_{10} 2 \approx 0.301 \] So we can substitute this value into our equation: \[ \log_{10} (2^{2010}) \approx 2010 \cdot 0.301 = 604.01 \] ### Step 4: Calculate the number of digits Now we can find the number of digits: \[ d = \lfloor 604.01 \rfloor + 1 = 604 + 1 = 605 \] ### Step 5: Find \( n \) Since \( n \) is defined as the number of digits minus 1: \[ n = d - 1 = 605 - 1 = 604 \] ### Final Answer Thus, the value of \( n \) is: \[ \boxed{604} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

VK JAISWAL ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If 2^(2010)=a(n)10^(n)+a(n-1)10^(n-1)+………..+a(2)10^(2)+a(1)*10+a(0), w...

    Text Solution

    |

  2. The number N=6^(log(10)40)*5^(log(10)36) is a natural number. Then s...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |