Home
Class 12
MATHS
Sum of all values of x satisfying the eq...

Sum of all values of x satisfying the equation `25^(2x-x^2+1)+9^(2x-x^2+1)=34(15^(2x-x^2))` is:

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 25^{(2x - x^2 + 1)} + 9^{(2x - x^2 + 1)} = 34 \cdot 15^{(2x - x^2)} \), we can follow these steps: ### Step 1: Rewrite the equation in terms of powers We can express \( 25 \) and \( 9 \) as powers of \( 5 \) and \( 3 \) respectively: \[ 25 = 5^2 \quad \text{and} \quad 9 = 3^2 \] Thus, we can rewrite the equation as: \[ (5^2)^{(2x - x^2 + 1)} + (3^2)^{(2x - x^2 + 1)} = 34 \cdot (15^{(2x - x^2)}) \] This simplifies to: \[ 5^{(4x - 2x^2 + 2)} + 3^{(4x - 2x^2 + 2)} = 34 \cdot 15^{(2x - x^2)} \] ### Step 2: Substitute \( y = 2x - x^2 \) Let \( y = 2x - x^2 \). Then we can rewrite the equation as: \[ 5^{(y + 1)} + 3^{(y + 1)} = 34 \cdot 15^y \] This can be simplified to: \[ 5 \cdot 5^y + 3 \cdot 3^y = 34 \cdot 15^y \] ### Step 3: Analyze the equation Notice that \( 15 = 5 \cdot 3 \), so we can rewrite \( 15^y \) as: \[ 15^y = 5^y \cdot 3^y \] Thus, we have: \[ 5^{y + 1} + 3^{y + 1} = 34 \cdot (5^y \cdot 3^y) \] ### Step 4: Set \( 5^y = a \) and \( 3^y = b \) Let \( a = 5^y \) and \( b = 3^y \). The equation becomes: \[ 5a + 3b = 34ab \] ### Step 5: Rearranging the equation Rearranging gives us: \[ 34ab - 5a - 3b = 0 \] This can be factored as: \[ (34b - 5)a - 3b = 0 \] ### Step 6: Solve for \( a \) and \( b \) This gives us two cases: 1. \( a = 0 \) (which is not possible since \( a = 5^y \)) 2. \( 34b - 5 = 0 \) which leads to \( b = \frac{5}{34} \) ### Step 7: Substitute back to find \( y \) From \( b = 3^y \): \[ 3^y = \frac{5}{34} \] Taking logarithm: \[ y \log(3) = \log\left(\frac{5}{34}\right) \] Thus, \[ y = \frac{\log\left(\frac{5}{34}\right)}{\log(3)} \] ### Step 8: Substitute \( y \) back to find \( x \) Recall \( y = 2x - x^2 \): \[ x^2 - 2x + y = 0 \] Using the quadratic formula, we find: \[ x = \frac{2 \pm \sqrt{4 - 4y}}{2} \] This simplifies to: \[ x = 1 \pm \sqrt{1 - y} \] ### Step 9: Calculate the sum of all values of \( x \) The roots of the quadratic equation sum to \( 2 \) (since \( x_1 + x_2 = 2 \) from the quadratic formula). ### Final Answer Thus, the sum of all values of \( x \) satisfying the equation is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The sum of all real values of x satisfying the equation (x^(2) -5x+5)^(x^(2)+4x-45)=1 is :

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Find the sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 .

The sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 is:

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Sum of the valus of x satisfying the equation sqrt(2x+sqrt(2x+4))=4 is ______.

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The complete set of values of x satisfying the equation x^2. 2^(x+1)+2^(|x-3|+2)=x^2. 2^(|x-3|+4)+2^(x-1) is

VK JAISWAL ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. Sum of all values of x satisfying the equation 25^(2x-x^2+1)+9^(2x-x^...

    Text Solution

    |

  2. The number N=6^(log(10)40)*5^(log(10)36) is a natural number. Then s...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |