Home
Class 12
MATHS
If a^x=b^y=c^z=d^w then loga(bcd)=...

If `a^x=b^y=c^z=d^w` then `log_a(bcd)=`

A

`z((1)/(x)+(1)/(y)+(1)/(w))`

B

`y((1)/(x)+(1)/(z)+(1)/(w))`

C

`x((1)/(y)+(1)/(z)+(1)/(w))`

D

`(xyz)/(w)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \log_a(bcd) \) given that \( a^x = b^y = c^z = d^w \), we can follow these steps: ### Step 1: Set a common variable Let \( k = a^x = b^y = c^z = d^w \). This means we can express \( a, b, c, \) and \( d \) in terms of \( k \): - From \( a^x = k \), we have \( a = k^{1/x} \). - From \( b^y = k \), we have \( b = k^{1/y} \). - From \( c^z = k \), we have \( c = k^{1/z} \). - From \( d^w = k \), we have \( d = k^{1/w} \). ### Step 2: Substitute \( b, c, d \) into \( \log_a(bcd) \) Now we can substitute \( b, c, \) and \( d \) into the logarithmic expression: \[ bcd = b \cdot c \cdot d = k^{1/y} \cdot k^{1/z} \cdot k^{1/w} \] Using the property of exponents, we can combine these: \[ bcd = k^{(1/y) + (1/z) + (1/w)} \] ### Step 3: Write the logarithm Now we need to evaluate: \[ \log_a(bcd) = \log_a(k^{(1/y) + (1/z) + (1/w)}) \] ### Step 4: Use the logarithmic identity Using the property of logarithms \( \log_b(m^n) = n \cdot \log_b(m) \): \[ \log_a(bcd) = \left( \frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right) \cdot \log_a(k) \] ### Step 5: Change of base for \( \log_a(k) \) We know that \( a = k^{1/x} \), so: \[ \log_a(k) = \log_{k^{1/x}}(k) = \frac{1}{(1/x)} \cdot \log_k(k) = x \] since \( \log_k(k) = 1 \). ### Step 6: Substitute back into the expression Now substituting back: \[ \log_a(bcd) = \left( \frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right) \cdot x \] ### Final Answer Thus, the final answer is: \[ \log_a(bcd) = x \left( \frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are in G.P. and a^x=b^y=c^z , then (a) logba=log_ac (b) log_cb =log_ac (c) log_ba=log_cb (d) none of these

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k , where a,b, c >0 & a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a,b,c,d are in GP and a^x=b^y=c^z=d^u , then x ,y,z,u are in

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If a,b,c,d be in G.P. and a^x=b^y=c^z=d^w , prove that 1/x,1/y,1/z,1/w are in A.P.

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If (a+b)/x=(b+c)/y=(c+a)/z ,then (A) (a+b+c)/(x+y+z)=(ab+bc+ca)/(ay+bz+cx) (B) c/(y+z-x)=a/(x+z-y)=b/(x+y-z) (C) c/x=a/y=b/z (D) (a+b)/(b+c)=(a+b+x)/(b+c+y)

If x^(18)=y^(21)=z^(28) , then 3,3 log_(y)x,3log_(z)y,7log_(x)z are in

VK JAISWAL ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If a^x=b^y=c^z=d^w then loga(bcd)=

    Text Solution

    |

  2. The number N=6^(log(10)40)*5^(log(10)36) is a natural number. Then s...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |