Home
Class 12
MATHS
if logkx.log5k = logx5 , k!=1 , k>0 , th...

if `log_kx.log_5k = log_x5` , `k!=1 , k>0` , then find the value of x

A

5

B

`(24)/(5)`

C

`(26)/(5)`

D

`(37)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_k x \cdot \log_5 k = \log_x 5 \), we will use the properties of logarithms. ### Step-by-Step Solution: 1. **Rewrite the logarithms using the change of base formula**: \[ \log_k x = \frac{\log x}{\log k} \quad \text{and} \quad \log_5 k = \frac{\log k}{\log 5} \] Substituting these into the equation gives: \[ \frac{\log x}{\log k} \cdot \frac{\log k}{\log 5} = \log_x 5 \] 2. **Simplify the left-hand side**: The \( \log k \) terms cancel out: \[ \frac{\log x}{\log 5} = \log_x 5 \] 3. **Rewrite \( \log_x 5 \) using the change of base formula**: \[ \log_x 5 = \frac{\log 5}{\log x} \] Now our equation looks like: \[ \frac{\log x}{\log 5} = \frac{\log 5}{\log x} \] 4. **Cross-multiply**: \[ (\log x)^2 = (\log 5)^2 \] 5. **Take the square root of both sides**: \[ \log x = \log 5 \quad \text{or} \quad \log x = -\log 5 \] 6. **Solve for \( x \)**: - From \( \log x = \log 5 \): \[ x = 5 \] - From \( \log x = -\log 5 \): \[ \log x = \log \frac{1}{5} \quad \Rightarrow \quad x = \frac{1}{5} \] 7. **Conclusion**: Since \( k > 0 \) and \( k \neq 1 \), both solutions \( x = 5 \) and \( x = \frac{1}{5} \) are valid. However, the context of the problem might suggest that \( x = 5 \) is the primary solution we are looking for. ### Final Answer: \[ x = 5 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

If lot 7- log 2 + log 16 - 2 log3 - log "" (7)/(45)= 1 + log k, find the value of k.

If log_lamdax.log_5lamda=log_x5,lamda ne1,lamdagt0 , then x is equal to

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If "log"_(5)("log"_(5)("log"_(2)x)) =0 then the value of x, is

If x in (0, (pi)/(2)) and sinx=(3)/(sqrt(10)) , Let k=log_(10)sinx+log_(10)cos x+2log_(10)cot x +log_(10) tan x then the value of k satisfies

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

VK JAISWAL ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. if logkx.log5k = logx5 , k!=1 , k>0 , then find the value of x

    Text Solution

    |

  2. The number N=6^(log(10)40)*5^(log(10)36) is a natural number. Then s...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |