Home
Class 12
MATHS
If T(r)=(1)/(log(z)4) (where r in N), t...

If `T_(r)=(1)/(log_(z)4)` (where `r in N`), then the value of `sum_(r=1)^(4) T_(r)` is :

A

3

B

4

C

5

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum_{r=1}^{4} T_r \) where \( T_r = \frac{1}{\log_z 4} \). ### Step 1: Understand the expression for \( T_r \) We know that \( T_r = \frac{1}{\log_z 4} \). The base \( z \) is not specified in the problem, but we can express \( \log_z 4 \) in terms of logarithms with base 2. ### Step 2: Rewrite \( \log_z 4 \) Using the change of base formula, we have: \[ \log_z 4 = \frac{\log_2 4}{\log_2 z} \] Since \( 4 = 2^2 \), we can simplify: \[ \log_2 4 = 2 \] Thus, \[ \log_z 4 = \frac{2}{\log_2 z} \] ### Step 3: Substitute back into \( T_r \) Now substituting this back into the expression for \( T_r \): \[ T_r = \frac{1}{\log_z 4} = \frac{\log_2 z}{2} \] ### Step 4: Calculate \( \sum_{r=1}^{4} T_r \) Now we can compute the sum: \[ \sum_{r=1}^{4} T_r = T_1 + T_2 + T_3 + T_4 = 4 \cdot \frac{\log_2 z}{2} \] This simplifies to: \[ \sum_{r=1}^{4} T_r = 2 \log_2 z \] ### Step 5: Determine \( z \) Since the problem does not specify \( z \), we can assume \( z = 2 \) (as it is common in logarithmic problems). Thus: \[ \log_2 2 = 1 \] So, \[ \sum_{r=1}^{4} T_r = 2 \cdot 1 = 2 \] ### Final Answer The value of \( \sum_{r=1}^{4} T_r \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Let T_(r) be the r^(th) term of a sequence, for r=1,2,3,......... If 3T_(r+1)=T_(r) and T_(7)=(1)/(243) then the value of sum_(r=1)^(oo)(T_(r).T_(r+1)) is :

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Find the sum sum_(r=1)^n r/(r+1)!

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

If n^(th) term (T_(n)) of the sequece is given by the relation T_(n+1)=T_(n)+2^(n),(n epsilonN) and T_(1)=3 , then the value of sum_(r=1)^(oo)1/(T_(r)-1) equals

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

VK JAISWAL ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If T(r)=(1)/(log(z)4) (where r in N), then the value of sum(r=1)^(4) ...

    Text Solution

    |

  2. The number N=6^(log(10)40)*5^(log(10)36) is a natural number. Then s...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |