Home
Class 12
MATHS
Let log(3)N=alpha(1)+beta(1) log(5)N=...

Let `log_(3)N=alpha_(1)+beta_(1)`
`log_(5)N=alpha_(2)+beta_(2)`
`log_(7)N=alpha_(3)+beta_(3)`
where `alpha_(1), alpha_(2) and alpha_(3)` are integers and `beta_(1), beta_(2), beta_(3) in [0,1)`.
Q. Difference of largest and smallest values of N if `alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2`.

A

97

B

100

C

98

D

99

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the largest and smallest values of \( N \) based on the given logarithmic equations. Let's break down the solution step by step. ### Step 1: Understand the logarithmic equations We have the following equations: 1. \( \log_3 N = \alpha_1 + \beta_1 \) 2. \( \log_5 N = \alpha_2 + \beta_2 \) 3. \( \log_7 N = \alpha_3 + \beta_3 \) Given: - \( \alpha_1 = 5 \) - \( \alpha_2 = 3 \) - \( \alpha_3 = 2 \) - \( \beta_1, \beta_2, \beta_3 \in [0, 1) \) ### Step 2: Express \( N \) in terms of \( \alpha \) and \( \beta \) From the logarithmic identities, we can express \( N \) as: - From the first equation: \[ N = 3^{\alpha_1 + \beta_1} = 3^5 \cdot 3^{\beta_1} \] - From the second equation: \[ N = 5^{\alpha_2 + \beta_2} = 5^3 \cdot 5^{\beta_2} \] - From the third equation: \[ N = 7^{\alpha_3 + \beta_3} = 7^2 \cdot 7^{\beta_3} \] ### Step 3: Calculate the bounds for \( N \) 1. **For \( N \) from the first equation:** - Minimum value when \( \beta_1 = 0 \): \[ N_{\text{min}} = 3^5 = 243 \] - Maximum value when \( \beta_1 \) approaches 1: \[ N_{\text{max}} < 3^{5 + 1} = 3^6 = 729 \] 2. **For \( N \) from the second equation:** - Minimum value when \( \beta_2 = 0 \): \[ N_{\text{min}} = 5^3 = 125 \] - Maximum value when \( \beta_2 \) approaches 1: \[ N_{\text{max}} < 5^{3 + 1} = 5^4 = 625 \] 3. **For \( N \) from the third equation:** - Minimum value when \( \beta_3 = 0 \): \[ N_{\text{min}} = 7^2 = 49 \] - Maximum value when \( \beta_3 \) approaches 1: \[ N_{\text{max}} < 7^{2 + 1} = 7^3 = 343 \] ### Step 4: Determine the overall bounds for \( N \) - The smallest value of \( N \) is the maximum of the minimum values: \[ \text{Smallest } N = \max(243, 125, 49) = 243 \] - The largest value of \( N \) is the minimum of the maximum values: \[ \text{Largest } N < \min(729, 625, 343) = 343 \] However, since \( N \) cannot equal 343, we take the largest value as: \[ \text{Largest } N = 342 \] ### Step 5: Calculate the difference Now, we find the difference between the largest and smallest values of \( N \): \[ \text{Difference} = 342 - 243 = 99 \] ### Final Answer The difference of the largest and smallest values of \( N \) is **99**.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let log_3^N = alpha_1 + beta_1 , log_5^N = alpha_2 + beta_2 , log_7^N = alpha_3 + beta_3 Largest integral value of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (A)342. (D) 242 (C) 243 (B) 343 342 17 Difference of largest and smallest integral values of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (D) 99 (C) 98 (B) 100 (A) 97

Let log_(a)N=alpha + beta where alpha is integer and beta =[0,1) . Then , On the basis of above information , answer the following questions. The difference of largest and smallest integral value of N satisfying alpha =3 and a =5 , is

If Delta = |(cos (alpha_(1) - beta_(1)),cos (alpha_(1) - beta_(2)),cos (alpha_(1) - beta_(3))),(cos (alpha_(2) - beta_(1)),cos (alpha_(2) - beta_(2)),cos (alpha_(2) - beta_(3))),(cos (alpha_(3) - beta_(1)),cos (alpha_(3) - beta_(2)),cos (alpha_(3) - beta_(3)))|" then " Delta equals

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If log_12 18=alpha and log_24 54=beta . Prove that alpha beta+5(alpha-beta)=1

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

If alpha ne beta but alpha^(2)= 5 alpha - 3 and beta ^(2)= 5 beta -3 then the equation having alpha // beta and beta // alpha as its roots is :

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to